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Abstract

This work proposes a model-reduction approach for the material point method on nonlinear manifolds.
Our technique approximates the kinematics by approximating the deformation map using an implicit
neural representation that restricts deformation trajectories to reside on a low-dimensional manifold. By
explicitly approximating the deformation map, its spatiotemporal gradients—in particular the deforma-
tion gradient and the velocity—can be computed via analytical differentiation. In contrast to typical
model-reduction techniques that construct a linear or nonlinear manifold to approximate the (finite
number of) degrees of freedom characterizing a given spatial discretization, the use of an implicit neu-
ral representation enables the proposed method to approximate the continuous deformation map. This
allows the kinematic approximation to remain agnostic to the discretization. Consequently, the tech-
nique supports dynamic discretizations—including resolution changes—during the course of the online
reduced-order-model simulation.

To generate dynamics for the generalized coordinates, we propose a family of projection techniques. At
each time step, these techniques: (1) Calculate full-space kinematics at quadrature points, (2) Calculate
the full-space dynamics for a subset of ‘sample’ material points, and (3) Calculate the reduced-space
dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold
and tangent space, respectively. We achieve significant computational speedup via hyper-reduction that
ensures all three steps execute on only a small subset of the problem’s spatial domain. Large-scale
numerical examples with millions of material points illustrate the method’s ability to gain an order of
magnitude computational-cost saving—indeed real-time simulations—with negligible errors.

Keywords: model reduction, deep learning, material point method, nonlinear manifolds, implicit
neural representation, real-time simulation

Highlights

• Novel model-reduction technique for the material point method

• Kinematics: implicit neural representation of the deformation map

• Dynamics: projection of position and velocity onto manifold and tangent space, respectively

• Hyper-reduction: achieve computational-cost savings by computing full-space dynamics for a small
number of material points

• Deformation-map approximation supports super-resolution and adaptive Eulerian quadratures

• Numerical experiments demonstrating an order of magnitude speedup
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1. Introduction

Computational physics plays a pivotal role in modern-day science and engineering, with important
applications spanning physics, chemistry, material science, civil engineering, aerospace engineering, vi-
sual effects, virtual reality, gaming, and many more. In these domains, practitioners must address the
fidelity–cost tradeoff. In particular, to ensure computational models satisfy the verification and validation
standards intrinsic to the application at hand, practitioners must generate high-fidelity models charac-
terized by a sufficiently fine spatiotemporal resolution. In many cases—especially for high-consequence
applications with stringent requirements on predictive fidelity—this leads to highly resolved models whose
computational cost precludes them from being employed in time-critical applications such as real-time
data assimilation, fast-turnaround design under uncertainty, and interactive simulations. Such applica-
tions demand rapid simulation times, with real-time simulation a requirement in some cases. This leads
to a computational barrier : sufficiently accurate computational models are often too computationally
costly to be deployed in important time-critical applications, which necessitates the use of simplified
models in such cases, which—in turn—often violate the accuracy requirements of the application.

In this work, we propose to overcome this computational barrier for a widely adopted simulation
framework in continuum mechanics: the material point method (MPM). To achieve this, we propose
a novel projetion-based model-reduction method that leverages implicit neural representations of the
deformation map. To our knowledge, this work comprises the first time a model-reduction technique has
been proposed for MPM or any other point-cloud-based simulation techniques, e.g., smoothed-particle
hydrodynamics (SPH). We proceed by reviewing the literature for projection-based model reduction
and the material point method in Sections 1.1 and 1.2, respectively, followed by a summary of our
contributions in Section 1.3.

1.1. Projection-based model reduction
To address the computational barrier mentioned above for a range of computational methods, re-

searchers have pursued projection-based model-reduction techniques [11]. In contrast to more common
approaches to model simplification (e.g., coarse graining, linearization), such techniques attempt to in-
herit the benefits of high-fidelity models (e.g., fine resolution, rich constitutive laws, material/geometric
nonlinearities, dynamical-system properties such as symplecticity) while drastically reducing simulation
costs by restricting trajectories to evolve on a low-dimensional subspace or manifold. When applied suc-
cessfully, these reduced-order models can incur orders-of-magnitude savings in computational cost while
incurring negligible errors. Reduced-order models have been successfully employed to solve real-world
problems in many fields, such as motor-generator design [15], batch chromatography [10], fluid dynamics
[13, 17, 20, 45, 71, 73, 122], structural dynamics [2], computer graphics [5, 56, 124], and robotics [115].

Model reduction for dynamical systems dates back to Sirovich [104], who applied principal component
analysis (PCA) to turbulence simulations and coined the term proper orthogonal decomposition (POD).
Model-reduction methods typically require two stages: an offline or ‘training’ stage, and an online or
‘evaluation’ stage. The offline stage executes costly computations in order to generate a low-dimensional
subspace or manifold to approximate the system’s kinematics; in the case of POD, this corresponds to
executing many expensive high-fidelity simulations at different problem-parameter instances, comput-
ing the singular value decomposition of resulting solution snapshots, and preserving the dominant left
singular vectors as a basis for a low-dimensional subspace. The online stage executes rapid simulations
by projecting the system’s dynamics onto the low-dimensional subspace or manifold in a manner that
preserves key dynamical-system properties; if the dynamical-system operators are nonlinear, then hyper-
reduction techniques are employed to ensure computational-cost savings, in which only a subset of the
problem domain is employed to perform projection [3, 20, 27, 38, 82, 99].

Traditionally, model-reduction techniques have employed linear subspaces for kinematic approxima-
tion; this includes the aforementioned POD method [1, 7, 12, 16, 19, 21, 29, 48, 64, 90, 94, 97, 103,
104, 119], the reduced-basis technique [91, 98], balanced truncation [79], rational interpolation [8, 44],
Craig–Bampton model reduction [24], and least-squares Petrov–Galerkin projection [17, 18, 20, 30]. Re-
cently, model reduction on nonlinear manifolds has gained increased attention [28, 37, 43, 47, 61, 62,
65, 66, 75, 76, 95, 96, 102]. In particular, for problems characterized by a slowly decaying Kolmogorov
width (e.g., advection-dominated problems), nonlinear manifolds—often constructed with deep neural
networks—have been shown to outperform their linear counterparts significantly. This is due to two
factors: the theoretical ability of nonlinear manifolds to overcome the Kolmogorov-width limitations
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of linear subspaces, and the recent development of deep-learning tools [88] that facilitate generating
accurate nonlinear manifolds with requisite smoothness properties from data [66].

Relatedly, data-driven dynamics-learning methods can also be used to generate approximations of
high-fidelity computational models as an alternative to projection-based reduced-order models [72, 80,
85, 113]. These techniques aim to learn both the embedding (i.e., mapping from high-dimensional state
to low-dimensional latent variables) and the dynamics (i.e., the time evolution of these latent variables)
in a purely data-driven manner that requires only observing the state and/or velocity during training
simulations. As such, these techniques do not require explicit knowledge of the equations governing the
dynamics of the system. However, as a result, these methods suffer from a range of drawbacks, including
violation of important physical properties underpinning the dynamical system, challenges in performing
error analysis and control, and a lack of generalization and robustness. For these reasons, the current
work focuses on projection-based model reduction.

1.2. Material point method
MPM was introduced by Sulsky et al. [112] as an extension of the particle-in-cell (PIC) method for

solid mechanics; it is a hybrid Eulerian–Lagrangian discretization method widely employed in solid, fluid,
and multiphase simulations. Due to its dual Eulerian and Lagrangian representations, MPM offers several
advantages over the finite element method (FEM), such as its ability to more easily handle problems
characterized by large deformation, fracture, contact, and collisions [6, 22, 25, 26, 32–34, 41, 46, 57, 58,
60, 63, 67, 68, 74, 81, 89, 93, 100, 109–111, 116, 120, 123, 125–127].

However, MPM’s dual Eulerian–Lagrangian representation of the material and the requisite transfer
between these representations also make it very computationally costly. In particular, MPM typically
tracks a large number of Lagrangian material points, which can be loosely interpreted as particles. At
every time step, to compute the dynamics update of these material points, MPM transfers the particle
information onto the Eulerian grid and conducts the dynamics update on the grid. Subsequently, MPM
transfers the updated velocities back to the Lagrangian particles. Consequently, MPM’s computational
cost is larger than either a strictly Lagrangian approach or a strictly Eulerian approach. Recent ad-
vances in sparse data structures [39, 55], compiler optimization [51, 52, 54], and multi-GPU [40, 118]
have made substantial progress in alleviating the computational cost of MPM, leading to practical appli-
cations of MPM to areas such as robotic control [50, 53] and topology optimization [69]. Yet, real-time,
million-particle MPM simulations remain out of reach. We aim to address this computational barrier by
developing a novel model-reduction method tailored to MPM.

Prior work on model reduction techniques for MPM is scarce if it exists at all; literature on model
reduction for alternative flavors of PIC methods and other point-cloud-based simulation techniques is also
severely limited. The few exceptions include the following contributions: Nicolini et al. [83] applied POD
to the PIC-based solver of the Maxwell–Vlasov equations, and Wiewel et al. [121] used convolutional
neural networks (CNNs) to reduce the dimension of the Eulerian grid data of the fluid implicit particle
(FLIP) method and used a long short-term memory (LSTM) networks to evolve the subspace. However,
these works focus on fluid mechanics problems and only conduct model reduction for the Eulerian degrees
of freedom. By contrast, MPM is particularly designed for solid mechanics, and model reduction for the
Lagrangian degrees of freedom has to be addressed. Relatedly, graph neural network (GNN) has also
been used to model physical systems with MPM training data [101]. However, since GNN reduces neither
the dimensionality of the system nor the complexity of the simulation, it offers no computational-cost
advantages over the original high-fidelity MPM simulations.

1.3. Overview of contribution
To develop a model-reduction framework for MPM, we first notice that MPM is characterized by

discrete Lagrangian kinematics, as kinematic information is stored on material points, and Eulerian
dynamics, as force calculations are performed on a background Eulerian grid. As such, we must develop
a model-reduction framework that is compatible with this conceptual decomposition.

To achieve this, we perform Lagrangian kinematics approximation. In principle, we could achieve
this in the canonical way by constructing a (linear or nonlinear) mapping from low-dimensional gener-
alized coordinates (i.e., latent variables) to the position of all material points in a high-fidelity MPM
discretization as depicted in Figure 1a. However, this introduces two major challenges. First, com-
puting the deformation gradient required for stress calculations becomes challenging; the deformation
gradient would need to be computed on the Eulerian grid and then transferred to the tracked material
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points, which could lead to inconsistencies between the advected deformation gradient and the kinematic
approximation itself. Second, hyper-reduction would become very difficult, as all neighboring material
points that could ever influence the (Eulerian) dynamics of the tracked set of material points over the
entire trajectory would need to be identified a priori ; this is not possible to do for general trajectories.
In addition to these challenges, the kinematic approximation is ‘tied’ to a specific, pre-defined spatial
discretization, precluding dynamic resolution changes that might be advantageous to introduce during
the reduced-order-model simulation.

Thus, we develop a novel kinematic approximation that directly approximates the continuous defor-
mation map itself; architecturally, this implies that the input to the parameterization function includes
both the generalized coordinates and the reference-domain coordinates of the material point of interest,
with the output corresponding to the deformation of that material point under the configuration imposed
by the generalized coordinates. Figure 1b depicts this kinematic approximation, which is tantamount to
constructing an implicit neural representation of the deformation map. The resulting approximation is
independent of the high-fidelity discretization by construction, as it effectively learns a mapping between
the generalized coordinates and the deformation that is applicable to material points associated with
any point in the reference domain. Consequently, the kinematics of arbitrary material points, including
the deformation gradients and the velocities, can be recovered from the approximation. This mesh-
independence feature enables dynamic resolution during the ROM simulation, even super-resolution,
wherein additional material points that were not present during training can be introduced online.

+ mesh independent
+ infinite resolution
+ adaptive refinement
+ gradient from 
differentiation

- mesh dependent
- fixed resolution
- no refinement
- no gradient info

𝒙 =
𝒙!
⋮
𝒙"

$𝒙
generalized 
coordinates

(a) Classical approach
𝑿

𝒙

(b) Our approach

initial position in the reference domain 𝑿 ∈ Ω!
current position 𝒙

discretized current position 𝒙"
number of discretized positions 𝑃

$𝒙
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Figure 1: Our approach vs. the classical approach. (a) In classical model reduction techniques, a mapping from the
generalized coordinates x̂ is often trained to infer the deformed positions xp of a finite number P of particles concatenated
into a column vector. Since this low-dimensional subspace is constructed for the discretized positions of the original
continuous deformation map, it has several key limitations: (1) it is mesh-dependent; (2) it does not support resolution
change; (3) it cannot handle adaptive resolutions during simulation; (4) it does not provide gradient information about
the deformed positions. (b) By contrast, our approach builds an implicit neural representation of the deformation map.
More precisely, this representation corresponds to a manifold-parameterization function that maps x̂ and an arbitrary
undeformed positionX to its deformed position x. Consequently, we can represent an infinite number of particle positions,
i.e., the entire deformation map, using the finite-dimensional generalized coordinates x̂. In other words, we built a low-
dimensional approximation of the continuous deformation map itself instead of the discretization of the deformation map
as it is done in the classical approach. Consequently, we can address all four aforementioned limitations.

In essence, our low-dimensional manifold is an implicit neural representation of the deformation map.
Implicit neural representation, a robust representation of arbitrary vector fields, has found substantial re-
cent success in the computer-vision community, and has been shown to generate accurate approximations
of signed distanced fields [23, 77, 87], image channels [105], as well as radiance fields [78]. Thanks to its
continuous nature, implicit neural representation has infinite resolution and continuous differentiability,
both of which are crucial for solving the dynamics of physical systems, where adaptive quadratures and
gradient computation are frequently required.

To our knowledge, our work is the first time implicit neural representation has been used for model
reduction for any physical system. Alternatively, our low-dimensional approximation can also be viewed
as an extension of the physics-informed neural network (PINN) [92] for model reduction. PINN explicitly
models time using a one-dimensional variable t. By contrast, our approach models time implicitly via
high-dimensional generalized coordinates x̂(t). Indeed, when x̂(t) = t, our model recovers the exact
formulation of PINN. By implicitly modeling time t, our representation enables online simulations that
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undergo drastically different temporal trajectories than the original offline training simulations. Such a
feature is crucial for applications involving diverse user interactions with the physical system.

After the low-dimensional manifold is constructed, we perform Eulerian dynamics approximation.
Specifically, at each time step, the method (1) calculates full-space kinematics at quadrature points, (2)
calculates the full-space dynamics by computing position and velocity updates in the full space for a subset
of ‘sample’ material points, and (3) calculates the reduced-space dynamics by projecting the updated
full-space position and velocity onto the low-dimensional manifold and tangent space, respectively. In
the first step, we consider both Lagrangian and (adaptive) Eulerian quadrature rules. The latter of these
is enabled by the invertibility of the deformation-map approximation and facilitates hyper-reduction, as
it obviates the need to identify and track neighboring material points that influence the dynamics of the
‘sample’ material points.

The remainder of the paper is organized as follows. First, Section 2 summarizes the fundamentals of
the material point method. Next, Section 3 introduces the proposed model-reduction approach, including
the kinematic approximation (Section 3.1), the dynamics approximation (Section 3.2), and the approach
to hyper-reduction (Section 3.2.1). Then, Section 4 describes the practical design of the kinematic
approximation, including the architecture choice for the associated neural network. Section 5 reports
numerical experiments, and—finally—Section 6 concludes the paper.

2. Full-order model

As the material point method is a hybrid Eulerian–Lagrangian method, we will introduce both for-
mulations of the problem statement. This section first introduces the full-order continuous problem
statement in Section 2.1 and later discretizes it using MPM in Section 2.2.

2.1. Continuous problem formulation
We study the trajectory of a solid body with a reference configuration given by Ω0 during the time

interval T := [t0, tT ] ⊆ R such that the body at any time t occupies a domain Ωt. In what follows we
use ∂Ω to denote the boundary of the domain Ω. We decompose the boundary as ∂Ω = ∂NΩ ∪ ∂DΩ,
∂NΩ ∩ ∂DΩ = ∅ with ∂NΩ and ∂DΩ denoting the portions of the boundary with prescribed Neumann
and Dirichlet boundary conditions, respectively.

We restrict attention to hyperelastic materials such that there exists a potential function of the
deformation gradient from which we can derive internal stresses [49]. Additionally, we assume that
problem parameters (e.g., geometric parameters, boundary conditions, external forces) can be represented
by the parameter vector µ ∈ D, where D ⊆ Rq denotes the parameter domain. In the remainder of
Section 2, we omit the explicit dependency on µ for simplicity of exposition; we reintroduce parameter
dependence in Section 3 to emphasize the parameterized evaluation of the proposed reduced-order model.

2.1.1. Lagrangian strong form
We define the deformation map φ : Ω0×T → Ωt, as the mapping from any point on the undeformed

domain Ω0 to the corresponding point on the deformed domain Ωt at a time t ∈ T . To enforce initial
conditions and essential (Dirichlet) boundary conditions, we restrict the deformation map φ to reside in
the space of admissible trajectories S such that φ ∈ S, where1

S := {ψ : Ω0 × T → Rd |ψ(X, 0) = X and ψ̇(X, 0) = V (X, 0), ∀X ∈ Ω0;

ψ̇(X, t) = V (X, t), ∀X ∈ ∂DΩ0(t), ∀t ∈ T }.
(1)

Here, (̇) denotes differentiation with respect to time for a fixed position on the reference domainX ∈ Ω0,
also known as the material time derivative; V denotes both the prescribed initial velocity V (·, 0) : Ω0 →
Rd and the prescribed boundary velocities V : ∂DΩ0(t)× T → Rd.

The problem then becomes: Find φ ∈ S such that for all time t ∈ T

ρ0φ̈ = ∇X · P (∇Xφ) +B, ∀X ∈ Ω0, (2)

PN = T , ∀X ∈ ∂NΩ0, (3)

1Note that we can prescribe either displacements or velocities as essential boundary conditions. We restrict boundary
displacements to be smooth in time. Therefore, the boundary displacements are uniquely defined by prescribed boundary
velocities. Thus in our formulation, without loss of generality, we can consider velocity-only essential boundary conditions.
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where ρ0 is the initial density defined on the reference domain, P denotes the first Piola–Kirchoff stress
tensor, T and B are external tractions and body forces, respectively, and N denotes the normal to the
boundary ∂Ω0.

2.1.2. Eulerian strong form
We can reformulate the problem of Section 2.1.1 in an Eulerian (i.e., spatially fixed) reference frame.

Note that for our particular problem, we need to retain a notion of deformation between adjacent
material points as stress depends on the deformation gradient. Hence in what follows, we formulate the
traditional Cauchy’s equations of motion, with velocity being the primary unknown variable, augmented
by an advection equation to “transport” deformation gradient along with the flow of the body.

The primary unknowns become the spatial velocity v and deformation gradient F that belong to
their respective admissible sets

V = {w : Ωt × T → Rd | w(x, 0) = v(x, 0), ∀x ∈ Ω0;w(x, t) = v(x, t), ∀(x, t) ∈ ∂DΩt × T }, (4)

W = {A : Ωt × T → Rd×d | A(X, 0) = 1, ∀X ∈ Ω0}, (5)

where 1 denotes a diagonal matrix of ones, and v(φ(X, t), t) = V (X, t) defines both initial and boundary
conditions.

The strong formulation of the problem statement, in the Eulerian frame of reference, can then be
expressed as follows: Find the velocity v ∈ V and the deformation gradient F ∈ W such that for all
t ∈ T

ρv̇ = ∇x · σ(F ) + b, ∀x ∈ Ωt, (6)
σn = t, ∀x ∈ ∂NΩt, (7)

and

Ḟ =
∂F

∂t
+ (∇xF )v = (∇xv)F , ∀x ∈ Ωt, (8)

where σ denotes the Cauchy stress tensor related to the first Piola–Kirchoff tensor by P = JσF−> with
J = det(F ), b : Ωt → Rd denotes body forces, t : ∂NΩt → Rd denotes the prescribed tractions, and
ρ : Ωt → R+ denotes the material density 2. The mapping φ can be recovered by integrating in time

φ(X, t) = X +

∫ t

0

v(x, τ)dτ. (9)

2.2. MPM discretization
We begin by discretizing the time interval T in discrete time instances {tn}Tn=0, where a subscript n

denotes a quantity defined at time step n. In the following sections, we first present how we approximate
the solution of Eq. (9) and Eq. (8). Next, we describe the discretization of the Eulerian equations of
motion Eq. (6).

2.2.1. Lagrangian discretization
We discretize our domain Ω0 with a collection of particles of finite volumes and masses {Xp}Pp=1 which

at any time tn occupy positions {xpn}Pp=1 and have mass {mp}Pp=1. In practice this can be achieved, for
example, by generating a simplicial subdivision of Ω0, assigning Xp ≡ xp0 as the barycenter of the pth
simplex, and mp the volume of the pth simplex times the density ρ0(Xp).

At each time step, given v(x, tn), we can evaluate vpn := v(xpn, tn) as well as lpn := ∇xv(xpn, tn). With
the above we can integrate in time Eq. (9) and Eq. (8) to obtain

xpn+1 = xpn + ∆tnv
p
n (10)

F pn+1 = F pn + ∆tnl
p
nF

p
n , (11)

for n = 0, . . . , T − 1, where ∆tn := tn+1 − tn.

2Body forces, tractions, and densities can be related to their corresponding Lagrangian quantities as follows Jb = B,
t‖JF−>N‖ = T , Jρ = ρ0.
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2.2.2. Eulerian discretization
Assuming sufficient regularity, an equivalent weak formulation of the Eulerian strong form Eq. 6 is:

Find the velocity v ∈ V such that for all time t ∈ T∫
Ω

ρv̇ · ηdV =

∫
Ω

(b · η − σ(F ) : ∇η)dV +

∫
∂NΩ

t · ηds ∀η ∈ V0, (12)

where V0 denotes the set of admissible test functions at time t, defined as

V0 := {w : Ωt × T → Rd |w(x, 0) = 0, ∀x ∈ Ω0;w(x, t) = 0, ∀(x, t) ∈ ∂DΩt × T }.

The above can be recast in mass-integral form using the relation dm = ρdV as∫
Ω

v̇ · ηdm =

∫
Ω

J

ρ0
(b · η − σ(F ) : ∇η)dm+

∫
∂NΩ

t · ηds, ∀η ∈ V0, ∀t ∈ T , (13)

where J := det(F ) and ρ0 := ρ(x, 0). We further assume a finite-dimensional approximation of V by

Vh = {wh ∈ V |wh =

B∑
j=1

w(t)Nj(x)},

and a similar finite-dimensional approximation for V0. We therefore can express the entire velocity field
via a finite number of (Eulerian) basis functions v(x, t) ≈

∑B
j=1 vjNj(x) ∈ Vh. Combining this with the

relation ∫
Ω

(•)dm ≈
P∑
p=1

(•)mp, (14)

we arrive at the set of discrete equations

P∑
p=1

(

B∑
j=1

v̇jNj Ni)|xp mp =

P∑
p=1

1

ρ0
[J (bNi − σ(F )∇Ni)] |xpmp +

∫
∂NΩ

tNi, i = 1, . . . , B. (15)

By invoking the mass-lumping approximation, we approximate the left-hand side of Eq. (15) as

P∑
p=1

(

B∑
j=1

v̇jNj Ni)|xp mp =

P∑
p=1

(

B∑
j=1

Nj Ni)|xp mpv̇j =

B∑
j=1

Mij v̇j ≈ miv̇i, i = 1, . . . , B, (16)

where Mij := (
∑P
p=1NjNi)xpmp and mi :=

∑B
j=1Mij .

Combining the spatial discretization above with time discretization, we now have enough ingredients
to devise an explicit time-integration scheme; Algorithm 1 reports the resulting algorithm that employs
the symplectic Euler method.

3. Reduced-order model

We now propose a methodology for model reduction applicable to the material point method that
relies on constructing a nonlinear approximation to the deformation map, as well as a family of projection
and hyper-reduction strategies.

3.1. Kinematics: low-dimensional manifold
In analogue to constructing low-dimensional nonlinear manifolds for finite-dimensional state spaces

[66], one can construct a nonlinear manifold that restricts any element of the reference domain Ω0 to
evolve on a low-dimensional manifold; this can be achieved via an implicit neural representation. We
first denote the approximated deformation map as φ̃ : Ω0 × T ×D → Rd with φ̃(·; ·,µ) ∈ S(µ), ∀µ ∈ D
and

φ̃(·; t,µ) :X 7→ x̃(t,µ) (17)

: Ω0 → Ω̃t(µ) ⊆ Rd, (18)
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Algorithm 1: MPM Algorithm
Input: Deformation gradient F pn , velocity vpn, and position xpn for each material point

p = 1, . . . , P at time instance tn
Output: Deformation gradient F pn+1, velocity v

p
n+1, and position xpn+1, p = 1, . . . , P at time

instance tn+1

1 Transfer Lagrangian kinematics to the Eulerian grid by performing a ‘particle to grid’ transfer:
Compute for i = 1, . . . , B

mi,n =

P∑
p=1

Ni(x
p
n)mp

mi,nvi,n =

P∑
p=1

Ni(x
p
n)mpvpn

fσi,n = −
P∑
p=1

J(F pn )

ρ0
σ(F pn )∇xNi(xpn) mp

fei,n =

P∑
p=1

J(F pn )

ρ0
b(xpn)Ni(x

p
n) mp

2 Solve Eulerian governing equations by computing for i = 1, . . . , B

v̇i,n+1 =
1

mi,n
(fσi,n + fei,n)

∆vi,n+1 = v̇i,n+1∆tn

vi,n+1 = vi,n + ∆vi,n+1

3 Update the Lagrangian velocity and deformation gradient by performing a ‘grid to particle’
transfer: Compute for p = 1, . . . , P

vpn+1 =

B∑
i=1

Ni(x
p
n)vi,n+1

F pn+1 = (1 +

B∑
i=1

vi,n+1 ⊗∇xNi(xpn)∆tn)F pn

4 Update Lagrangian positions for p = 1, . . . , P

xpn+1 = xpn + ∆tvpn+1

where Ω̃t(µ) ⊆ Rd denotes the deformed domain corresponding to the approximated solution at time
t ∈ T and parameter instance µ ∈ D, and enforce the kinematic constraint

φ̃(X; ·, ·) ∈M(X) := {g(X; ŷ) | ŷ ∈ Rr} ⊆ Rd, ∀X ∈ Ω0, (19)

where g : Ω0×Rr → Rd denotes a parameterization function for a low-dimensional manifold of dimension
r(� P ).

Pragmatically, the kinematic restriction (19) implies that there exist generalized coordinates x̂ :
T × D → Rr such that

φ̃(X; t,µ) = g(X; x̂(t,µ)), ∀X ∈ Ω0, ∀t ∈ T , µ ∈ D. (20)

Figure 2 schematically illustrates the manifold-parameterization function g underpinning the proposed
kinematic constraint.
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Figure 2: Manifold-parameterization function g maps the undeformed position X and the generalized coordinates x̂ to the
deformed position x̃. We can interpret this approximation as an implicit neural representation, as an input argument is
the (continuous) domain of the function, and the mapping will be learned using neural networks as described in Section 4.

Assuming continuous differentiability of the parameterization function, Eq. (20) implies that the
deformation gradient of the approximate solution can be calculated analytically as

F̃ : (X, t,µ) 7→ ∇φ̃(X; t,µ) ≡ ∇g(X; x̂(t,µ))

: Ω0 × T ×D → Rd×d,
(21)

where ∇(·) ≡ ∂
∂X (·) denotes the gradient with respect to the undeformed position, and that the velocity

of the approximated solution can be calculated as

˙̃
φ(X; t,µ) ≡ ∂g

∂x̂
(X; x̂(t,µ)) ˙̂x(t,µ), ∀X ∈ Ω0, ∀t ∈ T , µ ∈ D. (22)

where ˙̂x(t,µ) denotes the generalized velocity.
Recall that we require the approximated deformation map to reside in the space of admissible tra-

jectories such that φ̃(·; ·,µ) ∈ S(µ), ∀µ ∈ D. The boundary condition ˙̃
φ(X; t,µ) = V (X, t;µ), ∀X ∈

∂DΩ0(t;µ), ∀t ∈ T , ∀µ ∈ D can be satisfied trivially by enforcing the associated boundary conditions
to match the prescribed ones during the reduced-order simulation.

To satisfy the initial conditions

φ̃(X; 0,µ) = X, ∀X ∈ Ω0(µ), ∀µ ∈ D
˙̃
φ(X; 0,µ) = V (X, 0;µ), ∀X ∈ Ω0(µ), ∀µ ∈ D,

(23)

we represent the manifold-parameterization function as

g : (X, x̂) 7→ g̃(X, x̂) + a(X;µ) + b(X;µ)f(t) (24)

where g̃ : Ω0 × Rr → Rd is the approximated manifold-parameterization function, a : Ω0 × D → Rd
b : Ω0 ×D → Rd, and f : T → R satisfies f(0) = 0 and ḟ(0) = 1 (e.g., f : t 7→ t). Given the functional
form (24), one can satisfy the initial conditions (23) at any parameter instance µ ∈ D for any prescribed
initial values of x̂(0,µ) and ˙̂x(0,µ) by setting

a(X;µ) = X − g̃(X, x̂(0;µ)), ∀X ∈ Ω0, ∀µ ∈ D

b(X;µ) = V (X, 0;µ)− ∂g

∂x̂
(X; x̂(0,µ)) ˙̂x(0,µ), ∀X ∈ Ω0, ∀µ ∈ D.

(25)
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Additionally, we can obtain a good approximation of the initial boundary conditions utilizing g̃ alone
by choosing x̂(0;µ) and ˙̂x(0;µ) that minimize the L2-norm of a and b for any µ ∈ D, i.e.,

x̂(0;µ) ∈ argmin
ŷ

∫
Ω0(µ)

‖X − g̃(X, ŷ)‖2dX

˙̂x(0,µ) ∈ argmin
˙̂y

∫
Ω0(µ)

‖V (X, 0;µ)− ∂g

∂x̂
(X; x̂(0,µ)) ˙̂y‖2dX.

(26)

In practice, we approximate these integrals via numerical quadrature.

approximated deformation map

𝒙𝑿 𝒈|!𝒙

𝒈#𝟏|!𝒙

undeformed domain deformed domain

Ω% Ω&

Figure 3: Given the generalized coordinates x̂, the approximated deformation map allows us to recover the current position
of an arbitrary point from the undeformed domain (Eq. (20)). Other kinematic information, such as the deformation
gradient and the velocity, can also be recovered via differentiating the approximated deformation map (Eqs. (21) and
(22)). In addition, given an arbitrary point from the deformed domain, we can invert the approximated deformation
map to obtain its undeformed position. The approximated deformation map is invertible as long as the approximated
deformation map is non-degenerate, i.e.,the determinant of the deformation gradient J is nonzero.

Remark (Recover kinematics of any material point). We emphasize that—because this approach ap-
proximates the entire deformation map—given the value of the generalized coordinates x̂(t,µ) and its
time derivative ˙̂x(t,µ), we can compute the displacement, the deformation gradient, and the velocity
for any element of the reference domain X ∈ Ω0 via Eqs. (20), (21), and (22), respectively (Figure 3).
Further, assuming the parameterization function g is bijective between Ω0 and Ω̃t(µ) for a given value of
the generalized coordinates x̂(t,µ), we can even invert the approximated deformation map to obtain the
undeformed position of an arbitrary point in the deformed domain Ω̃t(µ). Consequently, our approach
supports adaptive quadrature for computing full-space dynamics as well as super-resolution.

3.2. Dynamics

!𝒗!, !𝒙!

𝒗!, 𝒙! 𝒗!"#$%&'(, 𝒙!"#$%&'(

!𝒗!"#, !𝒙!"#

1. Calculate full-
space quadrature-
point kinematics

3. Calculate the 
reduced-space 

dynamics

2. Calculate the full-
space dynamics

Figure 4: Reduced-order dynamics (Algorithm 2)

We compute the dynamics needed to evolve the generalized coordinates and velocity in three steps (see
Figure 4): Calculate full-space kinematics at quadrature points (Section 3.2.2), Calculate the full-space
dynamics for a small number of ‘sample material points’ (Section 3.2.3), and Calculate the reduced-space
dynamics (Section 3.2.4). The selection of sample material points is described in Section 3.2.1.
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Algorithm 2 presents the complete algorithm for generating reduced-order dynamics. We note that
displacement and velocity in the full space can always be decoded from the generalized coordinates, e.g.,
for rendering, computing quantities of interest.
Algorithm 2: Reduced-order-model dynamics
Input: Generalized velocity v̂n, generalized coordinates x̂n.
Output: Generalized velocity v̂n+1, generalized coordinates x̂n+1.

1 Calculate full-space kinematics at quadrature points via either Algorithm 3 or Algorithm 4.
2 Calculate the full-space dynamics for sample material points to obtain vp,trialn+1 and xp,trialn+1 for

p ∈ P using Algorithm 5.
3 Calculate the reduced-space dynamics by projecting vp,trialn+1 and xp,trialn+1 onto the reduced space

via either Algorithm 6 or Algorithm 7.

3.2.1. Hyper-reduction
A common theme across all three steps in the reduced-order dynamics (Figure 4 and Algorithm 2)

is that only a subset of the original material points is required for computation. This opportunity arises
from Step 3: because we only need to update a small number (i.e., r � P ) of generalized coordinates,
we can drastically undersample the full-space kinematics, yet retain an overdetermined least-squares
problem for this dynamics projection. As such, we achieve significant computational-cost savings by
performing this projection using a small subset of the original material points, which we refer to as the
‘sample material points’ indexed by P ⊆ {1, . . . , P}, where r

d ≤ |P| � P . This ensures the reduced-order
simulation incurs P -independent computational complexity; the set of approaches that enable reduced-
order models to operate on a small subset of thee domain is often referred to as hyper-reduction in the
literature [99].

As a consequence of employing a small number of material points in Step 3, the second step of
Algorithm 2 also only requires computing the dynamics for the small number of sample material points
belonging to the set P. To calculate these dynamics updates, Step 1 of Algorithm 2 requires computing
kinematic information only at quadrature points that share Eulerian basis-function support with the
sample material points.

While more advanced methods for choosing sample material points P exist [4, 18], we adopt a
straightforward stochastic sampling scheme due to its simplicity, wherein we re-sample at every time
step to ensure good coverage of the domain. If kinematic boundaries exist, special attention is given
to them by ensuring that the material points from these boundaries are included in P. In particular,
these kinematic material points’ Dirichlet boundary conditions are strictly enforced during the full-space
update (Section 3.2.3).

Figure 5 displays an example of the sample material point set P from one of the experiments that
will be discussed in Section 5.
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All material points 
(3,076,115)

Sampled material 
points ℳ

(50)

Figure 5: The sample material points P are shown on the right. Note that both the top and the bottom kinematic
boundaries are sampled.

3.2.2. Calculate full-space kinematics at quadrature points
To compute the dynamics of the sample material points P ⊆ {1, . . . , P}, the equation of motion has to

be integrated (13). We can discretize the spatial domain (14) with either Lagrangian quadrature points
defined by the reference configuration or Eulerian quadrature points defined by the current configuration.
Consequently, in the process of numerically evaluating the integral (15), we can use a quadrature rule
defined either on the Lagrangian quadrature points or the Eulerian quadrature points. Note that the
original MPM algorithm adopts the Lagrangian quadrature approach where the material points serve as
the Lagrangian quadrature points.

Formally, we can discretize the weak form (13) using quadrature points:

PQ∑
p=1

(

B∑
j=1

v̇jNj Ni)|xQ,p mQ,p =

PQ∑
p=1

1

ρ0
[J (bNi − σ(F )∇Ni)] |xQ,pmQ,p +

∫
∂NΩ

tNi, i = 1, . . . , B. (27)

where PQ denotes the number of the quadrature points and the left superscript (·)Q indicates quantities
related to the quadrature points. Note that Eq. (27) generalizes Eq. (15) from the original material point
method to allow for hyper-reduction and alternative quadrature rules.
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Eulerian quadrature 
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A sample material 
point in ℳ
Grid nodes involved 
in sample point 
integration
Lagrangian quadrature 
points {1,⋯ , 𝑃!}

Ω" Ω"

Figure 6: Lagrangian quadrature points (left) vs. Eulerian quadrature points (right). All depicted quadrature points
are required to compute the dynamics for the depicted sample material point. Note that in the Lagrangian quadrature
approach, the sample material point itself will also serve as a quadrature point, which is not the case with the Eulerian
quadrature approach. Both domains shown are the deformed domain Ωt.

3.2.2.1. Quadrature points via Lagrangian material points.
The first approach is similar to that employed by the original MPM algorithm. Here, we use the

neighboring material points to define the quadrature rule (Figure 6 left). Formally, we consider the
neighbors of the sample material points N ⊆ {1, . . . , P}, which we define as the subset of all material
points that share Eulerian basis-function support with the sample material points (with P ∩ N = ∅).
Together, the sample material points and the neighboring material points form the set of the quadrature
points, i.e., xQ,pn = x

Π(p)
n , p = 1, . . . , PQ, where PQ = |P ∪ N | and Π : {1, . . . , PQ} → P ∪ N is a

bijective mapping between the two sets.
Algorithm 3 provides the algorithm that identifies these quadrature points and obtains their kinematic

information from the approximated deformation map.

Algorithm 3: Full-space kinematics at Lagrangian quadrature points (via tracking material
points)
Input: Generalized velocity v̂n, generalized coordinates x̂n.
Output: Quadrature-point kinematics mQ,p

n , xQ,pn , vQ,pn , FQ,pn for p = 1, . . . , PQ

1 Compute the position xpn for each sample material point p ∈ P at time instance tn by evaluating
(20) for X = Xp, p ∈ P and t = tn.

2 Identify the basis functions I needed to compute dynamics for the sample material points, i.e.,
I = {i ∈ {1, . . . , B} | ∃p ∈ P s.t. Ni(xpn) 6= 0}.

3 Identify the neighbor material points set N , i.e.,
N = {p ∈ {1, . . . , P} \ P | ∃i ∈ I s.t. Ni(g(Xp; x̂n)) 6= 0}.

4 Compute the deformation gradient F pn and the velocity vpn for each sample and neighbor material
point at time instance tn by evaluating (21) and (22) for X = Xp, p ∈ P ∪N , and t = tn.

5 Set the quadrature point kinematics to be mQ,p = mΠ(p), xQ,pn = x
Π(p)
n , vQ,pn = v

Π(p)
n ,

FQ,pn = F
Π(p)
n for p = 1, . . . , PQ , where PQ = |P ∪ N | and Π : {1, . . . , PQ} → P ∪N is a

bijective mapping between the two sets.
This approach is most similar to the original emulated MPM approach, and it can incur an operation

count independent of the original number of material points P and Eulerian basis functions B. However,
it does require computing (and tracking) the set of neighboring material points. In the worst case,
tracking would result in P -dependeng complexity due to the difficulty of ascertaining a priori the set of
neighboring material points that will ever be encountered for a targeted sample point for any possible
online trajectory.

3.2.2.2. Quadrature points via Eulerian quadrature points.
To avoid the costly tracking of these neighboring material points, we present an alternative that

generates Eulerian quadrature points instead of the Lagrangian quadrature points (Figure 6 right). The
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resulting quadrature rules discretize the Eulerian configuration instead of the Lagrangian configuration.
We generate ` quadrature points per dimension and per background grid cell. These quadrature point
locations are evenly distributed such that the distance between each pair of neighboring quadrature point
is ∆x

` , where ∆x is the grid-cell width. Therefore, for each quadrature point, we have its current position
xQ,p and its volume V Q,p = 1

`d
V c, where V c = (∆x)d denotes the volume of the grid cell.

To compute the undeformed position of the Eulerian quadrature points in the reference configuration,
we can invert the approximated deformation by computing XQ,p such that g(XQ,p; x̂) = xQ,p. Other
kinematic quantities can then be computed using Equation (21) and Equation (22). The mass mQ,p of
each quadrature point can be computed asmQ,p = ρ0

JQ,p
n

V Q,p. These Eulerian quadrature points can then
be used the same way as the Lagrangian quadrature points to discretize the weak form of the equation
of motion (27).

Algorithm 4 presents the associated algorithm. In contrast to the first approach, this approach
does not require tracking any neighboring material points. Instead, leveraging the invertibility of the
deformation map, we can generate quadrature points necessary for updating the dynamics of the sample
material points. Consequently, the approach can incur an operation count independent of the original
number of material points P and Eulerian basis functions B without any additional tracking.

Algorithm 4: Full-space kinematics at Eulerian quadrature points (via inverting the
deformation-map approximation)
Input: Generalized velocity v̂n, generalized coordinates x̂n.
Output: Quadrature-point kinematics mQ,p, xQ,pn , vQ,pn , FQ,pn , p = 1, . . . , PQ

1 Compute the position xpn for each sample material point p ∈ P at time instance tn by evaluating
(20) for X = Xp, p ∈ P and t = tn.

2 Identify the basis functions I needed to compute dynamics for the sample material points, i.e.,
I = {i ∈ {1, . . . , B} | ∃p ∈ P s.t. Ni(xpn) 6= 0}.

3 Define a quadrature rule comprising quadrature points and their volumes xQ,pn ∈ Ω, V Q,p ∈ R+,
p = 1, . . . , PQ, used to assemble the governing equations at the sample nodes I. Compute the
undeformed positions of the quadrature points XQ,p

n by solving g(XQ,p
n ; x̂n) = xQ,pn ,

p = 1, . . . , PQ.
4 Compute the deformation gradient FQ,pn and the velocity vQ,pn for each quadrature point at time

instance tn by evaluating (21) and (22) for X = XQ,p
n and t = tn.

5 Compute the mass mQ,p for each quadrature point, mQ,p = ρ0
JQ,p
n

V Q,p where JQ,pn = det(FQ,pn ).

Remark. In addition to reducing the computational cost, the ability to generate arbitrary quadratures
also enables adaptive refinement, which can be instrumental when there is extreme deformation (i.e., the
determinant of the deformation gradient is large).

Remark. Since this work considers only elasticity, the quadrature points do not carry internal state
variables; for plasticity, we will need to equip the approach with a mechanism to predict (continuous)
fields of internal state variables. These fields could also be pursued with the mesh-independent low-
dimensional manifold presented in Section 3.1.

3.2.3. Calculate the full-space dynamics
This section calculates the full-space dynamics by computing the trial velocities and positions for

the material points belonging to the subset p ∈ P at tn+1. We deem these velocities and positions trial
because they do not necessarily respect the kinematic constraint (19) induced by the low-dimensional
manifold; they are simply the updates to the velocities and positions that would be computed from
the current state by the full-order model, restricted to the set of sample material points. Algorithm 5
presents the MPM-style dynamics calculation that works for both the Lagrangian-quadrature kinematics
and the Eulerian-quadrature kinematics.

Remark. A salient difference between the original MPM algorithm (Algorithm 1) and the dynamics
calculation presented here is that this new approach no longer needs to evolve the deformation gradient
explicitly. The deformation gradient is readily available from the approximated deformation map’s spatial
gradient as derived in Eq. (21).
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Algorithm 5: Full-space dynamics for sample material points
Input: Quadrature-point kinematics mQ,p, xQ,pn , vQ,pn , FQ,pn , p = 1, . . . , PQ

Output: Full-space trial positions xp,trialn+1 and velocities vp,trialn+1 for p ∈ P.
1 Perform the ‘particle to grid’ transfer by computing for i ∈ I

mi,n =

PQ∑
p=1

Ni(x
Q,p
n )mQ,p

mi,nvi,n =

PQ∑
p=1

Ni(x
Q,p
n )mQ,pvQ,pn

fσi,n = −
PQ∑
p=1

J(FQ,pn )

ρ0
σ(FQ,pn )∇xNi(xQ,pn ) mQ,p

fei,n =

PQ∑
p=1

J(FQ,pn )

ρ0
b(xQ,pn )Ni(x

Q,p
n ) mQ,p.

2 Perform the update step by computing for i ∈ I

v̇i =
1

mi
(fσi,n + fei,n)

∆vi = v̇i∆tn

vi,n+1 = vi,n + ∆vi.

3 Perform the ‘grid to particle’ transfer by computing for p ∈ P

vp,trialn+1 =
∑
i∈I

Ni(x
p
n)vi,n+1

4 Update Lagrangian positions for p ∈ P

xp,trialn+1 = xpn + ∆tvp,trialn+1

3.2.4. Calculate the reduced-space dynamics
This section proposes two approaches for computing reduced-space dynamics that project the newly

computed full-space trial positions and velocities onto the low-dimensional manifold, which effectively
updates the generalized coordinates and velocity.

Algorithm 6 presents an approach that performs a least-squares projection of the symplectic Euler
updated position and velocity onto the manifold and its tangent space, respectively. This associates with
a least-squares projection of the position and velocity, where the least-squares problem is linear for the
velocity, but nonlinear for the position; we solve the latter using the Gauss–Newton method [84] with
backtracking. We refer to this approach as the position-velocity projection scheme.
Algorithm 6: Reduced-space dynamics via position-velocity projection

Input: Full-space trial positions xp,trialn+1 and velocities vp,trialn+1 for p ∈ P.
Output: Generalized velocity v̂n+1 and generalized coordinates x̂n+1.

1 v̂n+1 and x̂n+1, which should satisfy the minimization problem

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P
‖∂g
∂x̂

(Xp; x̂n)v̂ − vp,trialn+1 ‖22. (28)

x̂n+1 ∈ arg min
x̂∈Rr

∑
p∈P
‖g(Xp; x̂)− xp,trialn+1 ‖22. (29)
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To reduce computational costs, we can linearize the nonlinear solve; Appendix A provides the deriva-
tion. The resulting approach is detailed in Algorithm 7. Since only velocity is involved in the least-squares
projection, we refer to this projection scheme as the velocity-only projection scheme; in principle, it does
not require the full-space trial positions xp,trialn+1 , p ∈ P.

Algorithm 7: Reduced-space dynamics via velocity-only projection

Input: Full-space trial velocities vp,trialn+1 for p ∈ P.
Output: Generalized velocity v̂n+1 and generalized coordinates x̂n+1.

1 x̂n+1 = x̂n + ∆tnv̂n+1, where v̂n+1 satisfies the minimization problem

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P
‖∂g
∂x̂

(Xp; x̂n)v̂ − vp,trialn+1 ‖22. (30)

4. Manifold-parameterization construction via implicit neural representation

Encoder function 𝒆
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Figure 7: The manifold parameterization function g is constructed via a multilayer perceptron neural network. When we
use a continuously differentiable activation function, we can also compute the approximated deformation gradient and the
approximated velocity everywhere. An encoder network e is used for generating x̂ from the simulation snapshot.

In principle, the manifold-parameterization function g : Ω0 × Rr → Rd could be constructed in
various ways. In this work, we employ a fully-connected deep-learning architecture (i.e., a multilayer
perceptron) for this purpose (Figure 7), which yields an implicit neural representation of the deformation
map. Recently in the the computer vision community, this particular network structure has been shown
to successfully model the signed distance fields of various geometries [87] and the radiance fields of
different viewing directions [78]. We adopt ELU activations to ensure continuous differentiability of the
deformation-map approximation, which is needed to compute the deformation gradient and velocity as
expressed in Eq. (21) and Eq. (22), respectively. As discussed in Section 3.1, the inputs to g correspond
to the undeformed position of a material point Xp ∈ Ω0 and the generalized coordinates x̂(t,µ) ∈ Rr,
the latter of which is shared among all material points. The output of g is the approximated deformed
position of the material point Xp. Thanks to the network’s continuous differentiability, we also obtain
the approximated deformation gradient and approximated velocity via backpropagation.

4.1. Encoder
To train the manifold-parameterization function g, we also need to define the value of the generalized

coordinates x̂ at each time step tn for each training parameter instance µ ∈ Dtrain. We do so implicitly
by introducing an encoder network e, which we train along with g. −→x (tn,µ) is the input to e, which
is defined by concatenating the deformed positions of all the material points. Such an input encourages
the injectivity of g with respect to x̂ since there exists a unique x̂ that corresponds to a simulation state,
as defined by all the positions of the material points. This input is particularly suitable for history-
independent problems, e.g., elasticity. For history-dependent problems, history-dependent variables can
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also be concatenated to the input to the encoder function to define a simulation state uniquely. In
practice, it is not essential that all material point positions are included in the input; a subset could be
selected in purpose to keep training tractable with highly resolved training simulations. In addition, the
encoder structure also encourages a spatially and temporally coherent representation of the simulation
state where contiguous generalized coordinates correspond to nearby simulation states [9].

Remark. While we utilize a neural-network-based encoder to associate each training sample with a
value for the generalized coordinates, this association can also be made in other ways. For example, the
generalized coordinates for each training sample can be defined by explicit, manual choice or by exposing
the generalized coordinates for each training sample to the optimization algorithm as training variables
along with the network weights. In practice, we found these approaches challenging to scale to problems
involving a large number of training samples, as the number of optimization variables with this approach
scales linearly with the number of training samples. Furthermore, it is inconvenient to enforce spatial
and temporal coherence with these techniques.

4.2. Loss function
We compute the neural-network weights θ?g and θ?e of the functions g and e as the (approximate)

solutions to the minimization problem

minimize
θg,θe

∑
n=0,...,T, p=1,...,P, µ∈Dtrain

(‖gθg (Xp; x̂θe(tn,µ))− φ(Xp; tn,µ)‖22

+ λF ‖∇gθg (Xp; x̂θe(tn,µ))−∇φ(Xp; tn,µ)‖2F

+ λv‖
∂gθg
∂x̂

(Xp; x̂θe(tn,µ))
x̂θe(tn+1,µ)− x̂θe(tn,µ)

∆t
− φ̇(Xp; tn,µ)‖22)

(31)

where x̂θe(tn,µ) := eθe(−→x (tn,µ)), Dtrain ⊆ D denotes the parameter instances for training, at which the
full-order model has been solved and solutions are available, and λF , λv ∈ R+ denote penalty parameters
for the deformation gradient and velocity, respectively.

The deformation-gradient penalty λF serves to enable the network to generate a manifold that can
accurately represent the spatial gradients (Eq. (21)), which is essential for both Lagrangian-quadrature
kinematics (Algorithm 3) and Eulerian-quadrature kinematics (Algorithm 4). The velocity penalty λv
serves to enable the network to generate a manifold whose tangent space can accurately capture the
velocity (Eq. (22)). This concept could be applied to higher-order spatiotemporal derivatives if desired.
The practical choices of λF and λv are detailed in the result section (Section 5).

Note that the x̂(tn+1,µ)−x̂(tn,µ)
∆t term is a finite difference approximation of the generalized velocity.

Such an approximation mitigates the truncation error incurred by the linearization underpinning the
velocity-only projection scheme for reduced-space dynamics (Appendix A).

5. Numerical experiments

We demonstrate the robustness of the proposed reduced-order approach on several large-deformation
nonlinear elasticity problems with complex geometry. The particular constitutive law we adopt is the
fixed corotated hyperelastic energy by Stomakhin et al. [108]; in principle, any hyperelastic model is
compatible with the proposed approach without modification. We employ the open-source explicit MPM
implementation by Wang et al. [117] to define our baseline full-order model. Both the full-order and
reduced-order models run on 12 threads on a 2.30GHz Intel Xeon E5-2686 v4 CPU. In addition, the
neural network portion of the reduced-order model pipeline—which comprises evaluation, inversion, and
differentiation of the deformation-map approximation—is implemented using the LibTorch library [88]
and runs on a single NVIDIA Tesla V100 GPU.
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Encoder network e

1D convolution layers

Layer Kernel size Stride size

1 6 2
. . . 6 2
nconv 6 2

Fully-connected layers

Layer Input dimension Output dimension

nconv + 1 dconv 32
nconv + 2 32 r

Manifold-parameterization function g

Fully-connected layers

Layer Input dimension Output dimension

1 d+ r 30
2 30 30
3 30 30
4 30 30
5 30 d

Table 1: For the manifold-parameterization function g, we adopt a lightweight implicit neural representation network by
using 5 fully connected hidden layers, each of size 30, where d ∈ {2, 3} and r denotes the reduced-order-model dimension.
For the encoder function e, since the concatenated input vector can be arbitrarily large depending on the number of
material points P in the full-order-model simulation, we avoid extensive usages of fully connected layers. Instead, several
1D convolution layers with a kernel size of 6 and a stride size of 2 are used to reduce the dimension of the input vector down
to dconv , which is as low as possible but no smaller than 32. After that, a fully connected layer transforms the previous
layer into a vector of size 32. Another fully connected layer then transforms the previous layer into a vector of the size r,
the dimension of the generalized coordinate.

Table 1 lists the detailed network structure of the manifold-parameterization function g and the
encoder function e. We adopt this network structure for all experiments presented in this work. The
rest of the training details are listed in Appendix B.

For hyper-reduction (Section 3.2.1), we find sampling at least 5 material points from each kinematic
boundary generates stable reduced-order dynamics. For the Eulerian quadrature point scheme (Sec-
tion 3.2.2), we use ` = 2, i.e., 2 quadrature points per cell per dimension. For the position-velocity
projection scheme (Section 3.2.4), we use a simple linear interpolation of the previous generalized coor-
dinates as the initial guess, x̂guess = 2x̂n − x̂(tn−1), and the solver typically converges in 2–3 iterations.

All reported errors in the following sections correspond to the accumulated position errors of the test
simulations executed at parameter instances not included in the set employed for training, i.e.,

position error =

√ ∑
n=0,...,T, p=1,...,P, µ∈Dtest

‖g(Xp; x̂(tn,µ))− φ(Xp; tn,µ)‖22√ ∑
n=0,...,T, p=1,...,P, µ∈Dtest

‖φ(Xp; tn,µ)‖22
.

Here, Dtest ⊆ D with Dtest ∩ Dtrain = ∅ denotes the set of test parameter instances. Note that this
approach to error estimation is not practical for real applications, as it requires executing the full-order
model and evaluating the discrepancy between the full-order and reduced-order solutions for all material
points at every time instance. Future work will pursue applying approaches that generate low-cost,
statistically validated models of the ROM error [35, 86].
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Experiment Geometry Young’s Poisson # of Grid cell Particles per cell Time step Time steps # of training # of testing
modulus ratio particles width per dimension size per simulation simulations simulations

Section 5.1 Cylinder 12500 Pa 0.3 1, 368 0.04 cm 2 1
144 s 30 24 6

Section 5.2 Cuboid 12500 Pa 0.3 1, 757 0.04 cm 2 1
144 s 30 29 7

Section 5.3 Cylinder 12500 Pa 0.3 1, 368 0.04 cm 2 1
144 s 432 12 24

Section 5.4 Tower 80000 Pa 0.2 3, 076, 115 0.48 cm 3 1
24 s 80 16 4

Table 2: Material properties and discretization parameters. Material points are initially positioned through the Poisson
disk sampling approach [14] by sampling a fixed number of particles per grid cell per dimension [59]. The time step size
is computed from the stability analysis based on the speed of the elastic wave and the element characteristic length scale
[31].

5.1. Gravity

𝑔 = 5 m/s2

𝑔 = 10 m/s2

𝑔 = 1 m/s2

Figure 8: The reduced-order simulation handles a wide range of gravity values. All snapshots are taken at the 30th time
step (t = 0.208 s).

We conduct our first set of numerical experiments on an elastic cylinder with a radius of 1 cm and a
height of 4 cm. Its material and discretization parameters are listed in Table 2. The elastic cylinder is
attached to a vertical wall on one side and deforms under the influence of a downward gravity (Figure 8).

We consider the parameterized problem µ = g ∈ D ⊆ R+, where g denotes the magnitude of the
gravitational force. We generate training and testing data via uniform sampling of 30 points in the
interval g ∈ [1, 10] m/s2. For each value of g, we execute a simulation of 30 time steps. Therefore, a
total of 930 simulation snapshots are generated, including the initial conditions. We then randomly split
the dataset of 30 simulations into an offline training dataset of 24 full simulations and an online testing
dataset of 6 full simulations.
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5.1.1. The effect of gradient penalties

(a) 
Lagrangian quadratures

position-velocity projection

(b)
Eulerian quadrature

position-velocity projection

(c)
Lagrangian quadratures 
velocity-only projection

(d)
Eulerian quadratures

velocity-only projection

Figure 9: The effect of gradient penalties during training. The temporal penalty term λv improves the accuracy of the
velocity-only projection schemes (c and d) but not the position-velocity projection schemes (a and b). The spatial penalty
term λF improves both projection schemes. The Lagrangian (a and c) and the Eulerian (b and d) quadrature approaches
yield similar results. Note that the experiment setup considers the parameterized problem µ = g ∈ D ⊆ R+, where g
denotes the magnitude of the gravitational force. No hyper-reduction is conducted.

In Figure 9, we study the influence of offline training parameters on the accuracy of the online
reduced-order simulation. The dimension of the generalized coordinates is fixed to be 7; similar trends
are observed for other generalized-coordinates dimensions. After training, we conduct reduced-order
simulations using the four different combinations proposed in Section 3.2 and Algorithm 2. To isolate
the source of error, we do not conduct hyper-reduction here.

Training with a nonzero value of the velocity-penalty parameter λv significantly improves the accuracy
of the velocity-only projection technique of Algorithm 7 (Figure 9 c and d). By contrast, the position-
velocity projection scheme of Algorithm 6 (Figure 9 c and d) is less sensitive to the choice of λv. Such
observations hold for both the Lagrangian quadratures and the Eulerian quadratures. This numerical
result aligns well with the theoretical analysis of linearization (Appendix A), because the velocity-only
projection technique relies primarily on the accuracy of the velocity projection. Furthermore, training
with a nonzero value of the deformation-gradient penalty λF improves all four algorithm combinations
(Figure 9 a, b, c, and d), likely due to the fact that this penalty encourages better deformation-gradient
approximations that are essential for defining the quadrature-point kinematics.
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5.1.2. The effect of the generalized coordinates dimension

1 2 3 4 5 6 7
Dimension of the generalized coordinates

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
n 

er
ro

r (
%

)

Lagrangian quadratures + position-velocity projection
Lagrangian quadratures + velocity-only projection
Eulerian quadratures + position-velocity projection
Eulerian quadratures + velocity-only projection

Figure 10: Increasing the dimension of the generalized coordinates improves the accuracy due to larger manifold dimensions.

Figure 10 demonstrates the effect of the generalized coordinates dimension r, which is a key hyperpa-
rameter of the network structure (Section 4). We train networks with different generalized coordinates
dimensions while fixing λv to be 0.01 and λF to be 100. Afterward, the trained networks are tested
for reduced-order simulations. In order to isolate the source of error, hyper-reduction is not applied.
Figure 10 shows that the four different algorithm combinations from Algorithm 2 demonstrate the same
trend: increasing the generalized coordinates dimension improves the simulation accuracy because the
network has a larger manifold dimension.

5.1.3. The effect of hyper-reduction

101 102 103

Number of sample material points

0

1

2

3

4

5

Po
sit

io
n 

er
ro

r (
%

)

Lagrangian quadratures + position-velocity projection
Lagrangian quadratures + velocity-only projection
Eulerian quadratures + position-velocity projection
Eulerian quadratures + velocity-only projection

Figure 11: The effectiveness of hyper-reduction is evidenced by the fact that using 10 sample material points yields less
than 1% error, and using just 100 points yields the same accuracy as no hyper-reduction, where all 1,368 material points
are used for projection.

Figure 11 reports the influence that the number of sample material points has on the accuracy of
the reduced-order simulations. After the offline training with a setup of λv = 0.01, λF = 100, r = 4,
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we conduct online, reduced-order simulations with various numbers of sample material points. Notably,
with just 10 sample material points, all four quadrature and projection combinations yield an error of
less than 1%. In addition, using just 100 points delivers the same level of accuracy as no hyper-reduction,
i.e., all 1,368 points’ dynamics are computed (Section 3.2.3) and used for projection onto the generalized
coordinates (Section 3.2.4).

5.1.4. Hyperparameter summary
To summarize all the offline and online hyperparameter options, we plot all the choices together

(Figure 12). Section 5.1.1, Section 5.1.2, and Section 5.1.3 each presents a “slice” of the hyperparameter
study in Figure 12 in order to articulate the effect of a particular parameter.

(a) Lagrangian quad + position-velocity proj

(c) Lagrangian quad + velocity-only proj

(b) Eulerian quad + position-velocity proj

(d) Eulerian quad + velocity-only proj

Legend: (𝜆! , 𝜆" , 𝑟)

Figure 12: Hyperparameter summary. Training with positive spatial and temporal gradient penalties yields the best results.
The size of the generalized coordinates should be larger than 1 in order to attain the best accuracy. The use of at least 10
sample material points leads to high projection accuracy.

As shown in Figure 12, independent of quadrature and projection combinations, training with a
generalized-coordinate dimension of r = 1 always yields a worse result, e.g., (100, 0.01, 1) vs. (100, 0.01, 4),
(100, 0.01, 1) vs. (100, 0.01, 7). Therefore, the default training strategy should use r > 1. Unlike the
position-velocity projection scheme (Figure 12 a and b), the velocity-only projection scheme (Figure 12
c and d) also consistently yields better result when training with a positive temporal gradient penalty
λv > 0, e.g. (0, 0.0, 4) vs. (0, 0.01, 4), (0, 0.0, 7) vs. (0, 0.01, 7). Therefore, the default training strategy
should use a positive temporal gradient penalty, especially when using velocity-only projection. The
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spatial gradient penalty also improves simulation accuracy, as discussed in Section 5.1.1. Therefore, the
default training strategy should also include the spatial gradient penalty term, though its significance is
lesser than the other terms (Figure 12). With the training strategy mentioned earlier, all four reduced-
order schemes achieve less than 1% error with just 10-100 sample material points. To obtain meaningful
results, projection with just one point should be avoided as it can cause an error over 100%.

Since this section focuses on small-scale experiments that serve to support an extensive parameter
study; as such, the opportunity for wall-time speedup of the reduced-order method over the full-order
method is diminished. Experiments in Section 5.4 will report wall-time speedups for higher-dimension
problems.

5.2. Torsion and tension

Figure 13: The object undergoes tension and torsion at the same time.

We apply tension and torsion to an elastic, rectangular cuboid (Figure 13). The dimensions of the
cuboid are 1 cm, 1 cm, and 4 cm. Its material and discretization properties are listed in Table 2.

We consider the parameterized problem µ = (v, ω) ∈ D ⊆ R2, where v denotes the translational
velocity and ω denotes the rotational velocity. We generate simulation data by varying the translational
velocity (v ∈ [0, 0.6] m/s) and the rotational velocity (ω ∈ [0, 2] rad/s). A total number of 36 simulations
are generated via full factorial sampling of the translation and the rotational velocities with six evenly
spaced samples in each dimension. Each simulation consists of 30 time steps. Therefore, we generate a
total of 1, 116 simulation snapshots, including the initial conditions. Afterward, we randomly assign 29
full simulations for training and 7 for testing.

Scheme Sample material Sample material
points count: 50 points count: 1,757 (all)

Lagrangian quad + position-velocity proj 0.28% 0.22%
Lagrangian quad + velocity-only proj 0.39% 0.29%
Eulerian quad + position-velocity proj 0.33% 0.24%
Eulerian quad + velocity-only proj 0.34% 0.27%

Table 3: Torsion and tension: errors of the reduced-order simulations on the testing dataset.

An approximated deformation map network is trained with λF = 100, λv = 0.01, r = 7 (c.f., Sec-
tion 5.1.4). We then conduct reduced-order simulations using this network. Table 3 reports the testing
errors of the reduced-order simulations using different quadrature and projection combinations with and
without hyper-reduction, demonstrating the effectiveness of the reduced-order simulation in modeling
tension and torsion.
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5.2.1. Zero-shot super-resolution

(b) Full low-resolution 
simulation 

(training data)

(c) Reduced high-resolution 
simulation

(after training)

Testing error: 0.7%

(d) Full high-resolution 
simulation

(testing data)

(a) Super-resolution baseline 
based on training data

Testing error: 3.1%

Figure 14: The approximated deformation map is trained with low-resolution simulations (b). We can then run high-
resolution, reduced-order simulations (c) that agree well with high-resolution, full-order simulations (d). The low-resolution
simulation has 1,757 material points (Table 2). The high-resolution simulation increases the spatial resolution by two times
in each dimension and has 13,900 material points in its initial setup. The Poisson disk sampling approach (Table 2)
employed for generating initial material points has a random nature. None of the high-resolution material points shares
identical initial positions with the low-resolution material points. In (a), we construct a super-resolution baseline by
using the “tracer particle technique” [36, 106], where we advect the high-resolution material points using the velocity field
computed from the low-resolution simulation. In comparison, our reduced high-resolution simulation has a higher accuracy
than the baseline, both visually and quantitatively, measured by the position error from the high-resolution simulation
ground truth. Note that our model (c) produces the same straight boundary as the ground truth testing data (d), as
highlighted in the region inside the black rectangle. By contrast, the baseline model (a) has an incorrect curved boundary.

Scheme Position error

Lagrangian quad + position-velocity proj 0.49%
Lagrangian quad + position-velocity proj (w/hyper-red) 0.53%
Lagrangian quad + velocity-only proj 0.48%
Lagrangian quad + velocity-only proj (w/hyper-red) 0.63%
Eulerian quad + position-velocity proj 0.47%
Eulerian quad + position-velocity proj (w/hyper-red) 0.50%
Eulerian quad + velocity-only proj 0.46%
Eulerian quad + velocity-only proj (w/hyper-red) 0.51%

Super-resolution baseline 2.04%

Table 4: Zero-shot super-resolution: errors of the reduced-order simulations on the high-resolution, torsion and tension
testing dataset. Our framework outperforms the super-resolution baseline without and with hyperreduction (using 50
sample material points of the original 13,900 high-resolution material points).

An advantage of training the deformation map instead of a finite number of material points is that
we can easily adjust the resolution of the reduced-order simulation. We can infer the dynamics of
an infinite number of material points so long as they belong to the reference domain. Consequently,
even though the deformation map is trained on low-resolution simulations (Figure 14b), we can run
high-resolution reduced-order simulations (Figure 14c) by using a finer MPM grid. Since the high-
resolution simulation is never exposed to the training process, zero-shot super-resolution is achieved [70].
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We construct a super-resolution baseline by advecting high-resolution material points on the velocity
field computed by the low-resolution simulation (a), employing the popular “tracer particle technique”
[36, 106]. Both simulations are compared with the high-resolution ground truth (Figure 14d). Table 4
lists the errors of the super-resolution simulations of all the reduced-order schemes and the baseline,
across the entire testing dataset. All reduced-order methods outperform the super-resolution baseline
significantly. Figure 14 demonstrates the visual superiority of our approach in comparison with the
baseline approach.

5.3. Poke-and-recover

𝒇(𝑟!, 𝜃, 𝜑)

Initial state Deformed state Recovered state

Figure 15: The material is poked at the top by different forces, resulting in different deformed states. The material then
recovers to its initial state because of elasticity.

Poking is a frequent use case of the elasticity simulation where a force is applied in a particular
direction at a small portion of the material and is released after a short period. The material then
recovers to its undeformed state due to elasticity.

The elastic cylinder from Section 5.1 is poked at the top (Figure 15). The poking force is characterized
by the spherical coordinate, where f(rp, θ, φ) = (rp sinφ cos θ, rp sinφ sin θ, rp cosφ). The corresponding
poking location, at which the force is applied, is (−rc cos θ,−rc sin θ, h), where rc and h are the radius
and the height of the cylinder, respectively. rp is chosen such that the poked location moves at a constant
speed of 4.8 cm/s. φ is fixed to be 1

12π. The poking force is applied for 0.25 s before it is released. After
the force is released, the cylinder recovers to its initial state due to elasticity.

We consider the parameterized problem µ = θ ∈ D ⊆ [0, 2π). We generate simulation data via
uniform sampling of θ in [0, 2π) with an interval of 1

18π, yielding a total of 36 simulations. We use 12 of
these 36 simulations for training. The value of θ for these 12 simulations is evenly spaced with an interval
of 1

6π. The remaining 24 simulations are used for testing. The goal of this training and testing split is
to gauge the ability of the proposed reduced-order model to respond to pokes at arbitrary values of θ.
Each simulation consists of 432 time steps. Therefore, a total of 15, 588 simulation snapshots, including
the initial conditions, are used for training and testing.

Scheme Sample material Sample material
points count: 50 points count: 1,368 (all)

Lagrangian quad + position-velocity proj 1.47% 1.07%
Lagrangian quad + velocity-only proj 1.47% 1.04%
Eulerian quad + position-velocity proj 1.67% 1.41%
Eulerian quad + velocity-only proj 1.55% 1.37%

Table 5: Poke-and-recover: errors of the reduced-order simulations on the testing dataset.
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We first conduct offline training with λF = 100, λv = 0.01, r = 6 (c.f., Section 5.1.4) and then run
online reduced-order simulations. Table 5 reports the testing errors of the reduced-order simulations using
different quadrature and projection combinations with and without hyper-reduction, demonstrating the
effectiveness of the reduced-order simulation in modeling the poke-and-recover problem.

5.3.1. Reduced-space trajectory
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Figure 16: The temporal trajectory of the generalized coordinates x̂, visualized by its first two principal components. The
time step number is annotated next to the trajectory. x̂ at time step 0 corresponds to the initial state (Figure 15 left);
x̂ at time step 50 corresponds to the deformed state (Figure 15 middle); x̂ at time step 432 corresponds to the recovered
state (Figure 15 right). Under the poking force, the generalized coordinates move away from their initial values and then
return to their initial values due to elasticity.

Figure 16 plots the trajectory of the generalized coordinates x̂ of a reduced poke-and-recover simu-
lation. Since x̂ is high-dimensional in general, we visualize x̂ by projecting it onto a 2D plane spanned
by its first two principal components.

Under the influence of the poking force, the material takes up a deformed state in the full space
−→x ; after the force is removed, the material then returns to its undeformed state. It is also desirable to
maintain such a “return” property in the reduced space x̂, where x̂ returns to its initial value. In general,
one state in the full space can correspond to multiple generalized coordinates, i.e., the approximate
deformation map is not necessarily injective with respect to x̂. By using the encoder training scheme
presented in Section 4.1, we can encourage injectivity and can indeed maintain the “return” property
in the reduced space. As shown in Figure 16, the generalized coordinates x̂ return to the origin, which
maps to the undeformed state in the full space.

5.3.2. Continual manipulation

Figure 17: Repetitive poking. The reduced-order model supports continual manipulation of the object. We demonstrate
several snapshots from a 30-second simulation sequence. The object on the left (red) is the ground truth; the object on
the right (blue) is the reduced-order simulation. The reduced-order simulation agrees well with the full-order simulation.
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Figure 18: Repetitive poking of a more complex geometry [117]. The object on the left (red) is the ground truth; the object
on the right (blue) is the reduced-order simulation.

One advantage of maintaining the “return” property is that even though the training data consists of
simulations poking only once, we can actually run reduced-order simulations that poke repetitively. After
each poke-and-recover sequence, the generalized coordinates x̂ return to their starting values, ready to
be poked again in an arbitrary direction.

Therefore, we run a reduced-order simulation consisting of ten consecutive poke-and-recover se-
quences, where the poking direction is chosen each time randomly (Figure 17). This simulation has
4320 time steps or 30 s in total. Table 6 reports its error in comparison with the full-order simulation.
All quadrature and projection combinations produce good agreements with and without hyper-reduction.
Note that no full-order simulation of 30 s is included in the training data. All training simulations are 3
s, demonstrating our framework’s robust generalization capability. Our work also handles more complex
geometries (Figure 18).

Scheme Sample material Sample material
points count: 50 points count: 1,368 (all)

Lagrangian quad + position-velocity proj 1.72% 1.45%
Lagrangian quad + velocity-only proj 1.82% 1.41%
Eulerian quad + position-velocity proj 1.88% 1.81%
Eulerian quad + velocity-only proj 1.96% 1.74%

Table 6: Continual poking and recovering: errors of the reduced-order simulations.
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5.4. Large-scale experiments

t = 0.0s t = 1.67s t = 3.33s

𝑟 = 0.066
𝜃 = 1.386
𝜙 = −0.903

𝑟 = 0.075
𝜃 = 1.060
𝜙 = −0.537

𝑟 = 0.080
𝜃 = 0.403
𝜙 = −0.967

𝑟 = 0.062
θ = 0.071
𝜙 = −0.765

Figure 19: An object with complicated geometry undergoes elastic deformation (visualized with mesh, c.f., Figure 5 for
raw material point data). Each row records a different configuration in the testing dataset (i.e., unseen during training).
Each column corresponds to a different time during the simulation. The leftmost column is the beginning of the simulation,
while the rightmost column is the end of the simulation. In each snapshot, the white tower on the left is the full-order
simulation, while the yellow tower on the right is the reduced-order simulation. The full-order model and the reduced-order
model match overall in all configurations and at all times. However, the reduced model lacks secondary wrinkles that are
present in the full-order model. More complex network architecture can be explored in order to capture these secondary
features.

To demonstrate the efficiency of the reduced-order simulation in comparison to the full-order simula-
tion, we conduct large-scale experiments with a complex tower geometry (Figure 19). The material and
discretization parameters of the object are listed in Table 2.

Both the top and the bottom of the object experiences Dirichlet boundary conditions. The top
is kinematically moved under a fixed velocity while the bottom is stationary. The fixed velocity is
parameterized by a spherical coordinate, v = (r, θ, φ) = (r cosφ cos θ, r cosφ sin θ, r sinφ), where r ∈
[0.6, 0.8), θ ∈ [0, π2 ), and φ ∈ [− 2π

3 ,−
π
3 ).

We analyze the proposed approach in this parametrized setting (µ = (r, θ, φ) ∈ D ⊆ R3). We generate
training data by running 16 simulations with different (r, θ, φ) triplets sampled using the Latin hypercube
method [107]. We further sample another 4 simulations for testing purposes using the same approach.
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    full-order modelreal-time

Figure 20: Position error vs. wall time. Each data point corresponds to a particular reduced-order setup (quadrature
choices, projection types, and the number of sample material points). Wall time is the average computational cost for
every physical second of simulation. A real-time simulation requires the wall clock time to be 1 (green line). The red line
indicates the wall clock time of the original simulation. Setups using Eulerian quadratures and velocity-only projection
with fewer than 50 sample material points (blue cross and orange cross) reach the real-time criteria and are over 20 times
faster than the full-order model while maintaining accuracy.

An approximated deformation map network is trained with λF = 100, λv = 0.01, r = 6 (c.f., Sec-
tion 5.1.4). Afterward, we conduct systematic tests over the different reduced-order approaches and
different numbers of sample material points (Figure 20). All setups using the Eulerian quadratures (pen-
tagon and cross) offer a significant speedup over the full-order model while maintaining accuracy. By
contrast, due to their need to track every material point, Lagrangian quadrature approaches (circle and
square) do not offer a reduction in computation complexity and do not offer speedup over the full-order
model. While velocity-only projection methods (square and cross) generally have a slightly higher error
than position-velocity projection methods (circle and pentagon), they are also computationally faster.
Across all methods, the fewer sample material points, the faster the simulation and the higher the error.
In particular, the reduced-order simulations employing Eulerian quadratures and velocity-only projection
with fewer than 50 sample material points (blue cross and orange cross) attain real-time performance
and are over 20 times faster than the baseline full-order model. Figure 19 displays all four testing simula-
tions using the Eulerian quadratures and velocity-only projection with 50 sample material points (orange
cross). Visually, the reduced-order simulations agree well with the full-order simulations while missing
some secondary wrinkle deformations. Further research can be conducted on increasing the complexity
of the network to capture these secondary deformations [105, 114].

Remark. Instead of computing the dynamics of over 3 million material points, we only need to calculate
the dynamics of no more than 50 points (over 600,000 times reduction). However, the speedup number we
observe is reduced to 20X. This discrepancy can be understood by the nonlocal nature of MPM, where a
neighborhood of quadratures points is required for computing the dynamics of even just one material point.
Consequently, in order to update the dynamics of 50 points, over 20,000 quadrature points are involved
in the particle to grid transfer. To achieve the full wall-clock performance potential of the reduced-
order model, further research should consider adaptive quadrature rules that lower the total number of
quadrature points involved.

Remark. We adopt a random sampling approach for choosing hyper-reduction sample material points
(Section 3.2.1). While such a method is easy to implement, it does not guarantee optimality in terms of
errors and computation costs. Future work should be conducted to select the optimal set of hyper-reduction
points to minimize the position error and the computation cost.

5.4.1. Comparison
To compare the proposed framework with other model reduction methods, we first notice that there

is no prior work on model reduction of MPM using the classical approach (Figure 1a). As discussed
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in Section 1.3, the classical approach (e.g., POD) is unsuitable for model reduction of MPM due to
the challenge of approximating the deformation gradients and achieving hyper-reduction. Consequently,
we construct a baseline model using our approach (Figure 1b) with a linear manifold. Essentially, we
replace the nonlinear manifold-parameterization function with a linear one. In practice, this amounts
to replacing the multilayer neural-network-based manifold-parameterization function (Figure 7) with a
single linear layer (without activation), wherein we train only the weights and biases of a single layer; as
such, it is similar to classical linear-subspace methods such as POD. Note that the the nonlinear manifold
and the linear manifold share the same reduced-dimension of r = 6.

(b) Nonlinear manifold
(our approach)

Training error: 0.5%

(c) Linear manifold

Training error: 13.4%

(a) Training data

Figure 21: Nonlinear manifold vs. linear manifold. Replacing the nonlinear manifold-parameterization proposed in this
work with a linear one leads to a significant performance decline. The linear manifold (c) struggles to approximate the
highly nonlinear training data (a). By contrast, our proposed nonlinear manifold (b) accurately reconstructs the training
data. The nonlinear manifold and the linear manifold both use a reduced-dimension of r = 6.

As shown in Figure 21, our nonlinear manifold significantly outperforms the linear one in terms of
training accuracy, both quantitatively and visually. The linear approximation struggles to reconstruct
the highly nonlinear deformation of the elastic object. We further attempted to deploy the trained
linear manifold in the same setting as Figure 20. However, simulations using the linear manifold all
went unstable in just a few time steps and were unable to complete the simulation. This is somewhat
anticipated since the projection-based dynamics (Section 3.2) further depend on the gradient information
of the manifold-parameterization function. We thereby draw the conclusion that the robust, expressive
nonlinear manifold (engineered via a deep neural network) proposed in this work is essential for building
a manifold-parameterization function of the highly nonlinear deformation map.

6. Conclusions and future work

This work has presented—to our knowledge—the first projection-based reduced-order model for the
material point method. In contrast with prior model reduction techniques that build a low-dimensional
manifold of the discretization of the “deformation map”, we create a discretization-agnostic, continuously-
differentiable, low-dimensional manifold of the “deformation map” itself based on implicit neural repre-
sentations. We then utilize this low-dimensional manifold to drive the MPM simulation via optimal-
projection-based dynamics, ensuring the simulated trajectory remains on the low-dimensional manifold
associated with the deformation-map approximation. We propose two different quadrature approaches
for computing full-space kinematics, and two different projection approaches for computing reduced-space
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dynamics. Through the introduction of hyper-reduction, we demonstrate that this approach can dras-
tically reduce the dimension of the MPM hyperelasticity simulations and offers an order-of-magnitude
wall-time speedup.

Moving forward, we envision 3 exciting directions to improve our work. (1) Supporting more con-
tinuum mechanics phenomena. We aim to extend our work to support other material behaviors, such
as plasticity, fracture, contact, and collision. (2) Improving wall-time performance. This work focuses
on the spatial model reduction of MPM. Future work should also consider a reduction in the temporal
domain in order to take a larger time step size. Since the stress evaluation is completed on the CPU while
the neural network evaluation is completed on the GPU, expensive CPU-GPU transfer is conducted at
each time step. Future work might investigate a full GPU implementation to avoid the costly transfer.
(3) Extending the use of implicit neural representations in model reduction for other types of systems
and discretization methods. Even though the proposed model reduction framework is designed for MPM,
the proposed manifold parameterization function is, in fact, discretization independent. Therefore, we
would like to go beyond MPM and explore its ability in model reduction of other continuum mechanics
discretizations, such as the finite element method (FEM) and smoothed-particle hydrodynamics (SPH).
For the same reason, we would also like to explore the manifold parameterization function’s ability to
learn from simulation data with adaptive refinement.
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A. Projection linearization

Substituting x̂n+1 = x̂n + ∆tnv̂n+1 into Equation (29) yields

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P
‖g(Xp; x̂n + ∆tnv̂)− xp,trialn+1 ‖22. (A.1)

Using Taylor’s theorem, we have

g(Xp; x̂n + ∆tnv̂)− xp,trialn+1 ≈ g(Xp; x̂n) + ∆tn
∂g

∂x̂
(Xp; x̂n)v̂ − xp,trialn+1

= g(Xp; x̂n) + ∆tn
∂g

∂x̂
(Xp; x̂n)v̂ − (xpn + ∆tnv

p,trial
n+1 )

= ∆tn
∂g

∂x̂
(Xp; x̂n)v̂ −∆tnv

p,trial
n+1

= ∆tn(
∂g

∂x̂
(Xp; x̂n)v̂ − vp,trialn+1 )

Under this linearization, Equation (A.1) becomes Equation (30). Consequently, the effectiveness of
velocity-only projection depends on the accuracy of such a linearization.

B. Training details

We implement the network in PyTorch [88] and train the network with the ADAM optimizer with
an adaptive learning rate, decreasing from 1e − 3 to 1e − 6. We initialize the neural network’s weights
using the Xavier initialization [42]. We conduct standard feature-scaling for the network’s input and
output to ease the training process. Min-max normalization is performed for the reference positions,
while standardization is conducted for the network’s output to have zero mean and unit variance.
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