
Journal of Computational Physics 478 (2023) 111908
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Model reduction for the material point method via an implicit 

neural representation of the deformation map

Peter Yichen Chen a,∗, Maurizio M. Chiaramonte b, Eitan Grinspun c,a, 
Kevin Carlberg b

a Columbia University, 116th St & Broadway, New York, NY 10027, USA
b Meta Reality Labs Research, 9845 Willows Road, Redmond, WA 98052, USA
c University of Toronto, 40 St. George Street, Room 4283, Toronto, ON M5S 2E4, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 April 2022
Received in revised form 26 October 2022
Accepted 2 January 2023
Available online 18 January 2023

Keywords:
Model reduction
Deep learning
Material point method
Nonlinear manifolds
Implicit neural representation
Real-time simulation

This work proposes a model-reduction approach for the material point method on 
nonlinear manifolds. Our technique approximates the kinematics by approximating the 
deformation map using an implicit neural representation that restricts deformation 
trajectories to reside on a low-dimensional manifold. By explicitly approximating the 
deformation map, its spatiotemporal gradients—in particular the deformation gradient and 
the velocity—can be computed via analytical differentiation. In contrast to typical model-
reduction techniques that construct a linear or nonlinear manifold to approximate the 
(finite number of) degrees of freedom characterizing a given spatial discretization, the 
use of an implicit neural representation enables the proposed method to approximate the 
continuous deformation map. This allows the kinematic approximation to remain agnostic 
to the discretization. Consequently, the technique supports dynamic discretizations—
including resolution changes—during the course of the online reduced-order-model 
simulation.
To generate dynamics for the generalized coordinates, we propose a family of projection 
techniques. At each time step, these techniques: (1) Calculate full-space kinematics at 
quadrature points, (2) Calculate the full-space dynamics for a subset of ‘sample’ material 
points, and (3) Calculate the reduced-space dynamics by projecting the updated full-space 
position and velocity onto the low-dimensional manifold and tangent space, respectively. 
We achieve significant computational speedup via hyper-reduction that ensures all three 
steps execute on only a small subset of the problem’s spatial domain. Large-scale numerical 
examples with millions of material points illustrate the method’s ability to gain an order of 
magnitude computational-cost saving—indeed real-time simulations—with negligible errors.

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: cyc@cs.columbia.edu (P.Y. Chen), mchiaram@meta.com (M.M. Chiaramonte), eitan@cs.toronto.edu (E. Grinspun), carlberg@meta.com

(K. Carlberg).
URL: https://peterchencyc.com (P.Y. Chen).
https://doi.org/10.1016/j.jcp.2023.111908
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.111908
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.111908&domain=pdf
mailto:cyc@cs.columbia.edu
mailto:mchiaram@meta.com
mailto:eitan@cs.toronto.edu
mailto:carlberg@meta.com
https://peterchencyc.com
https://doi.org/10.1016/j.jcp.2023.111908


P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
1. Introduction

Computational physics plays a pivotal role in modern-day science and engineering, with important applications spanning 
physics, chemistry, material science, civil engineering, aerospace engineering, visual effects, virtual reality, gaming, and many 
more. In these domains, practitioners must address the fidelity–cost tradeoff. In particular, to ensure computational models 
satisfy the verification and validation standards intrinsic to the application at hand, practitioners must generate high-fidelity 
models characterized by a sufficiently fine spatiotemporal resolution. In many cases—especially for high-consequence appli-
cations with stringent requirements on predictive fidelity—this leads to highly resolved models whose computational cost 
precludes them from being employed in time-critical applications such as real-time data assimilation, fast-turnaround design 
under uncertainty, and interactive simulations. Such applications demand rapid simulation times, with real-time simulation
a requirement in some cases. This leads to a computational barrier: sufficiently accurate computational models are often 
too computationally costly to be deployed in important time-critical applications, which necessitates the use of simplified 
models in such cases, which—in turn—often violate the accuracy requirements of the application.

In this work, we propose to overcome this computational barrier for a widely adopted simulation framework in contin-
uum mechanics: the material point method (MPM). To achieve this, we propose a novel projection-based model-reduction 
method that leverages implicit neural representations of the deformation map. To our knowledge, this work comprises the 
first time a model-reduction technique has been proposed for MPM or any other point-cloud-based simulation techniques, 
e.g., smoothed-particle hydrodynamics (SPH). We proceed by reviewing the literature for projection-based model reduc-
tion and the material point method in Sections 1.1 and 1.2, respectively, followed by a summary of our contributions in 
Section 1.3.

1.1. Projection-based model reduction

To address the computational barrier mentioned above for a range of computational methods, researchers have pur-
sued projection-based model-reduction techniques [11]. In contrast to more common approaches to model simplification 
(e.g., coarse graining, linearization), such techniques attempt to inherit the benefits of high-fidelity models (e.g., fine res-
olution, rich constitutive laws, material/geometric nonlinearities, dynamical-system properties such as symplecticity) while 
drastically reducing simulation costs by restricting trajectories to evolve on a low-dimensional subspace or manifold. When 
applied successfully, these reduced-order models can incur orders-of-magnitude savings in computational cost while incur-
ring negligible errors. Reduced-order models have been successfully employed to solve real-world problems in many fields, 
such as motor-generator design [15], batch chromatography [10], fluid dynamics [13,17,20,47,73,76,131], structural dynamics 
[2], computer graphics [5,58,133], and robotics [123].

Model reduction for dynamical systems dates back to Sirovich [112], who applied principal component analysis (PCA) 
to turbulence simulations and coined the term proper orthogonal decomposition (POD). Model-reduction methods typically 
require two stages: an offline or ‘training’ stage, and an online or ‘evaluation’ stage. The offline stage executes costly com-
putations in order to generate a low-dimensional subspace or manifold to approximate the system’s kinematics; in the case 
of POD, this corresponds to executing many expensive high-fidelity simulations at different problem-parameter instances, 
computing the singular value decomposition of resulting solution snapshots, and preserving the dominant left singular vec-
tors as a basis for a low-dimensional subspace. The online stage executes rapid simulations by projecting the system’s 
dynamics onto the low-dimensional subspace or manifold in a manner that preserves key dynamical-system properties; if 
the dynamical-system operators are nonlinear, then hyper-reduction techniques are employed to ensure computational-cost 
savings, in which only a subset of the problem domain is employed to perform projection [3,20,29,40,88,106].

Traditionally, model-reduction techniques have employed linear subspaces for kinematic approximation; this includes 
the aforementioned POD method [1,7,12,16,19,21,31,50,66,97,101,104,111,112,128], the reduced-basis technique [98,105], 
balanced truncation [84], rational interpolation [8,46], Craig–Bampton model reduction [25], and least-squares Petrov–
Galerkin projection [17,18,20,32]. Recently, model reduction on nonlinear manifolds has gained increased attention 
[30,39,45,49,63,64,67,68,80,81,102,103,110]. In particular, for problems characterized by a slowly decaying Kolmogorov width 
(e.g., advection-dominated problems), nonlinear manifolds—often constructed with deep neural networks—have been shown 
to outperform their linear counterparts significantly. This is due to two factors: the theoretical ability of nonlinear manifolds 
to overcome the Kolmogorov-width limitations of linear subspaces, and the recent development of deep-learning tools [95]
that facilitate generating accurate nonlinear manifolds with requisite smoothness properties from data [68].

Relatedly, data-driven dynamics-learning methods can also be used to generate approximations of high-fidelity compu-
tational models as an alternative to projection-based reduced-order models [75,85,91,121]. These techniques aim to learn 
both the embedding (i.e., mapping from high-dimensional state to low-dimensional latent variables) and the dynamics (i.e., 
the time evolution of these latent variables) in a purely data-driven manner that requires only observing the state and/or 
velocity during training simulations. Similarly, data-driven surrogate models [22,28,78,109,124] train direct mappings from 
problem parameters to physical states. Both data-driven dynamics-learning methods and surrogate models are extremely 
fast to compute due to their data-driven nature since no solver is required at inference time. However, since these tech-
niques do not require explicit knowledge of the equations governing the dynamics of the system, they suffer from a range 
of drawbacks, including violation of important physical properties underpinning the dynamical system, challenges in per-
2



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
forming error analysis and control, and a lack of generalization and robustness. For these reasons, the current work focuses 
on projection-based model reduction.

1.2. Material point method

MPM was introduced by Sulsky et al. [120] as an extension of the particle-in-cell (PIC) method for solid mechanics; it is 
a hybrid Eulerian–Lagrangian discretization method widely employed in solid, fluid, and multiphase simulations. Due to its 
dual Eulerian and Lagrangian representations, MPM offers several advantages over the finite element method (FEM), such as 
its ability to more easily handle problems characterized by large deformation, fracture, contact, and collisions [6,23,26,27,
34–36,43,48,59,60,62,65,69,70,79,87,96,100,107,117–119,125,129,132,134–136].

However, MPM’s dual Eulerian–Lagrangian representation of the material and the requisite transfer between these rep-
resentations also make it very computationally costly. In particular, MPM typically tracks a large number of Lagrangian 
material points, which can be loosely interpreted as particles. At every time step, to compute the dynamics update of these 
material points, MPM transfers the particle information onto the Eulerian grid and conducts the dynamics update on the 
grid. Subsequently, MPM transfers the updated velocities back to the Lagrangian particles. Consequently, MPM’s computa-
tional cost is larger than either a strictly Lagrangian approach or a strictly Eulerian approach. Recent advances in sparse 
data structures [41,57], compiler optimization [53,54,56], and multi-GPU [42,127] have made substantial progress in allevi-
ating the computational cost of MPM, leading to practical applications of MPM to areas such as robotic control [52,55] and 
topology optimization [71]. Yet, real-time, million-particle MPM simulations remain out of reach. We aim to address this 
computational barrier by developing a novel model-reduction method tailored to MPM.

Prior work on model reduction techniques for MPM is scarce if it exists at all; literature on model reduction for alterna-
tive flavors of PIC methods and other point-cloud-based simulation techniques is also severely limited. The few exceptions 
include the following contributions: Nicolini et al. [89] applied POD to the PIC-based solver of the Maxwell–Vlasov equa-
tions, and Wiewel et al. [130] used convolutional neural networks (CNNs) to reduce the dimension of the Eulerian grid data 
of the fluid implicit particle (FLIP) method and used a long short-term memory (LSTM) networks to evolve the subspace. 
However, these works focus on fluid mechanics problems and only conduct model reduction for the Eulerian degrees of 
freedom. By contrast, MPM is particularly designed for solid mechanics, and model reduction for the Lagrangian degrees of 
freedom has to be addressed. Relatedly, graph neural network (GNN) has also been used to model physical systems with 
MPM training data [108]. However, since GNN reduces neither the dimensionality of the system nor the complexity of the 
simulation, it offers no computational-cost advantages over the original high-fidelity MPM simulations.

1.3. Overview of contribution

To develop a model-reduction framework for MPM, we first notice that MPM is characterized by discrete Lagrangian kine-
matics, as kinematic information is stored on material points, and Eulerian dynamics, as force calculations are performed on 
a background Eulerian grid. As such, we must develop a model-reduction framework that is compatible with this conceptual 
decomposition.

To achieve this, we perform Lagrangian kinematics approximation. In principle, we could achieve this in the canonical way 
by constructing a (linear or nonlinear) mapping from low-dimensional generalized coordinates (i.e., latent variables) to the 
position of all material points in a high-fidelity MPM discretization as depicted in Fig. 1a. However, this introduces two 
major challenges. First, computing the deformation gradient required for stress calculations becomes challenging; the defor-
mation gradient would need to be computed on the Eulerian grid and then transferred to the tracked material points, which 
could lead to inconsistencies between the advected deformation gradient and the kinematic approximation itself. Second, 
hyper-reduction would become very difficult, as all neighboring material points that could ever influence the (Eulerian) 
dynamics of the tracked set of material points over the entire trajectory would need to be identified a priori; this is not 
possible to do for general trajectories. In addition to these challenges, the kinematic approximation is ‘tied’ to a specific, 
pre-defined spatial discretization, precluding dynamic resolution changes that might be advantageous to introduce during 
the reduced-order-model simulation.

Thus, we develop a novel kinematic approximation that directly approximates the continuous deformation map itself; 
architecturally, this implies that the input to the parameterization function includes both the generalized coordinates and 
the reference-domain coordinates of the material point of interest, with the output corresponding to the deformation of that 
material point under the configuration imposed by the generalized coordinates. Fig. 1b depicts this kinematic approximation, 
which is tantamount to constructing an implicit neural representation of the deformation map. The resulting approximation 
is independent of the high-fidelity discretization by construction, as it effectively learns a mapping between the generalized 
coordinates and the deformation that is applicable to material points associated with any point in the reference domain. 
Consequently, the kinematics of arbitrary material points, including the deformation gradients and the velocities, can be 
recovered from the approximation. This mesh-independence feature enables dynamic resolution during the ROM simulation, 
even super-resolution, wherein additional material points that were not present during training can be introduced online.

In essence, our low-dimensional manifold is an implicit neural representation of the deformation map. Implicit neural 
representation, a robust representation of arbitrary vector fields, has found substantial recent success in the computer-vision 
community, and has been shown to generate accurate approximations of signed distanced fields [24,82,94], image channels 
3



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 1. Our approach vs. the classical approach. (a) In classical model reduction techniques, a mapping from the generalized coordinates x̂ is often trained 
to infer the deformed positions xp of a finite number P of particles concatenated into a column vector. Since this low-dimensional subspace is constructed 
for the discretized positions of the original continuous deformation map, it has several key limitations: (1) it is mesh-dependent; (2) it does not support 
resolution change; (3) it cannot handle adaptive resolutions during simulation; (4) it does not provide gradient information about the deformed positions. 
(b) By contrast, our approach builds an implicit neural representation of the deformation map. More precisely, this representation corresponds to a manifold-
parameterization function that maps x̂ and an arbitrary undeformed position X to its deformed position x. Consequently, we can represent an infinite 
number of particle positions, i.e., the entire deformation map, using the finite-dimensional generalized coordinates x̂. In other words, we built a low-
dimensional approximation of the continuous deformation map itself instead of the discretization of the deformation map as it is done in the classical 
approach. Consequently, we can address all four aforementioned limitations.

[113], as well as radiance fields [83]. Thanks to its continuous nature, implicit neural representation has infinite resolution 
and continuous differentiability, both of which are crucial for solving the dynamics of physical systems, where adaptive 
quadratures and gradient computation are frequently required.

To our knowledge, the concurrent work by Pan et al. [92] and our work are the first time implicit neural representations 
have been used for model reduction for any physical system. Alternatively, our low-dimensional approximation can also be 
viewed as an extension of the physics-informed neural network (PINN) [99] for model reduction. PINN explicitly models 
time using a one-dimensional variable t . By contrast, our approach models time implicitly via high-dimensional generalized 
coordinates x̂(t). Indeed, when x̂(t) = t , our model recovers the exact formulation of PINN. By implicitly modeling time 
t , our representation enables online simulations that undergo drastically different temporal trajectories than the original 
offline training simulations. Such a feature is crucial for applications involving diverse user interactions with the physical 
system.

After the low-dimensional manifold is constructed, we perform Eulerian dynamics approximation. Specifically, at each 
time step, the method (1) calculates full-space kinematics at quadrature points, (2) calculates the full-space dynamics by 
computing position and velocity updates in the full space for a subset of ‘sample’ material points, and (3) calculates the 
reduced-space dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold and 
tangent space, respectively. In the first step, we consider both Lagrangian and (adaptive) Eulerian quadrature rules. The latter 
of these is enabled by the invertibility of the deformation-map approximation and facilitates hyper-reduction, as it obviates 
the need to identify and track neighboring material points that influence the dynamics of the ‘sample’ material points.

The remainder of the paper is organized as follows. First, Section 2 summarizes the fundamentals of the material point 
method. Next, Section 3 introduces the proposed model-reduction approach, including the kinematic approximation (Sec-
tion 3.1), the dynamics approximation (Section 3.2), and the approach to hyper-reduction (Section 3.2.1). Then, Section 4
describes the practical design of the kinematic approximation, including the architecture choice for the associated neural 
network. Section 5 reports numerical experiments, and—finally—Section 6 concludes the paper.

2. Full-order model

As the material point method is a hybrid Eulerian–Lagrangian method, we will introduce both formulations of the prob-
lem statement. This section first introduces the full-order continuous problem statement in Section 2.1 and later discretizes 
it using MPM in Section 2.2.

2.1. Continuous problem formulation

We study the trajectory of a solid body with a reference configuration given by �0 during the time interval T :=
[t0, tT ] ⊆R such that the body at any time t occupies a domain �t . In what follows we use ∂� to denote the boundary of 
the domain �. We decompose the boundary as ∂� = ∂N� ∪ ∂D�, ∂N� ∩ ∂D� = ∅ with ∂N� and ∂D� denoting the portions 
of the boundary with prescribed Neumann and Dirichlet boundary conditions, respectively.

We restrict attention to hyperelastic materials such that there exists a potential function of the deformation gradient 
from which we can derive internal stresses [51]. Additionally, we assume that problem parameters (e.g., geometric parame-
ters, boundary conditions, external forces) can be represented by the parameter vector μ ∈ D, where D ⊆ Rq denotes the 
parameter domain. In the remainder of Section 2, we omit the explicit dependency on μ for simplicity of exposition; we 
4



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
reintroduce parameter dependence in Section 3 to emphasize the parameterized evaluation of the proposed reduced-order 
model.

2.1.1. Lagrangian strong form
We define the deformation map φ : �0 × T → �t , as the mapping from any point on the undeformed domain �0 to 

the corresponding point on the deformed domain �t at a time t ∈ T . To enforce initial conditions and essential (Dirichlet) 
boundary conditions, we restrict the deformation map φ to reside in the space of admissible trajectories S such that φ ∈ S , 
where1

S := {ψ : �0 × T → Rd |ψ(X,0) = X and ψ̇(X,0) = V (X,0), ∀X ∈ �0;
ψ̇(X, t) = V (X, t), ∀X ∈ ∂D�0(t), ∀t ∈ T }. (1)

Here, (̇) denotes differentiation with respect to time for a fixed position on the reference domain X ∈ �0, also known as 
the material time derivative; V denotes both the prescribed initial velocity V (·, 0) : �0 →Rd and the prescribed boundary 
velocities V : ∂D�0(t) × T →Rd .

The problem then becomes: Find φ ∈ S such that for all time t ∈ T

ρ0φ̈ = ∇X · P (∇Xφ) + B, ∀X ∈ �0, (2)

P N = T , ∀X ∈ ∂N�0, (3)

where ρ0 is the initial density defined on the reference domain, P denotes the first Piola–Kirchhoff stress tensor, T and B
are external tractions and body forces, respectively, and N denotes the normal to the boundary ∂�0.

2.1.2. Eulerian strong form
We can reformulate the problem of Section 2.1.1 in an Eulerian (i.e., spatially fixed) reference frame. Note that for our 

particular problem, we need to retain a notion of deformation between adjacent material points as stress depends on the 
deformation gradient. Hence in what follows, we formulate the traditional Cauchy’s equations of motion, with velocity being 
the primary unknown variable, augmented by an advection equation to “transport” deformation gradient along with the flow 
of the body.

The primary unknowns become the spatial velocity v and deformation gradient F that belong to their respective admis-
sible sets

V = {w : �t × T → Rd | w(x,0) = v(x,0), ∀x ∈ �0; w(x, t) = v(x, t), ∀(x, t) ∈ ∂D�t × T }, (4)

W = {A : �t × T → Rd×d | A(X,0) = 1, ∀X ∈ �0}, (5)

where 1 denotes a diagonal matrix of ones, and v(φ(X, t), t) = V (X, t) defines both initial and boundary conditions.
The strong formulation of the problem statement, in the Eulerian frame of reference, can then be expressed as follows: 

Find the velocity v ∈ V and the deformation gradient F ∈W such that for all t ∈ T

ρ v̇ = ∇x · σ (F ) + b, ∀x ∈ �t , (6)

σn = t, ∀x ∈ ∂N�t, (7)

and

Ḟ = ∂ F

∂t
+ (∇x F )v = (∇x v)F , ∀x ∈ �t , (8)

where σ denotes the Cauchy stress tensor related to the first Piola–Kirchhoff tensor by P = Jσ F −� with J = det(F ), 
b : �t → Rd denotes body forces, t : ∂N�t → Rd denotes the prescribed tractions, and ρ : �t → R+ denotes the material 
density.2 The mapping φ can be recovered by integrating in time

φ(X, t) = X +
t∫

0

v(x, τ )dτ . (9)

1 Note that we can prescribe either displacements or velocities as essential boundary conditions. We restrict boundary displacements to be smooth in 
time. Therefore, the boundary displacements are uniquely defined by prescribed boundary velocities. Thus in our formulation, without loss of generality, 
we can consider velocity-only essential boundary conditions.

2 Body forces, tractions, and densities can be related to their corresponding Lagrangian quantities as follows J b = B , t‖ J F −� N‖ = T , Jρ = ρ0.
5



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
2.2. MPM discretization

We begin by discretizing the time interval T in discrete time instances {tn}T
n=0, where a subscript n denotes a quantity 

defined at time step n. In the following sections, we first present how we approximate the solution of Eq. (9) and Eq. (8). 
Next, we describe the discretization of the Eulerian equations of motion Eq. (6).

2.2.1. Lagrangian discretization
We discretize our domain �0 with a collection of particles of finite volumes and masses {X p}P

p=1 which at any time tn

occupy positions {xp
n }P

p=1 and have mass {mp}P
p=1. In practice this can be achieved, for example, by generating a simplicial 

subdivision of �0, assigning X p ≡ xp
0 as the barycenter of the pth simplex, and mp the volume of the pth simplex times the 

density ρ0(X p).
At each time step, given v(x, tn), we can evaluate v p

n := v(xp
n , tn) as well as lp

n := ∇x v(xp
n , tn). With the above we can 

integrate in time Eq. (9) and Eq. (8) to obtain

xp
n+1 = xp

n + �tn v p
n (10)

F p
n+1 = F p

n + �tnlp
n F p

n , (11)

for n = 0, . . . , T − 1, where �tn := tn+1 − tn .

2.2.2. Eulerian discretization
Assuming sufficient regularity, an equivalent weak formulation of the Eulerian strong form Eq. (6) is: Find the velocity 

v ∈ V such that for all time t ∈ T∫
�

ρ v̇ · ηdV =
∫
�

(b · η − σ (F ) : ∇η)dV +
∫

∂N �

t · ηds ∀η ∈ V0, (12)

where V0 denotes the set of admissible test functions at time t , defined as

V0 := {w : �t × T → Rd | w(x,0) = 0, ∀x ∈ �0; w(x, t) = 0, ∀(x, t) ∈ ∂D�t × T }.
The above can be recast in mass-integral form using the relation dm = ρdV as∫

�

v̇ · ηdm =
∫
�

J

ρ0
(b · η − σ (F ) : ∇η)dm +

∫
∂N �

t · ηds, ∀η ∈ V0, ∀t ∈ T , (13)

where J := det(F ). We further assume a finite-dimensional approximation of V by

Vh = {wh ∈ V | wh =
B∑

j=1

w(t)N j(x)},

and a similar finite-dimensional approximation for V0. We therefore can express the entire velocity field via a finite number 
of (Eulerian) basis functions v(x, t) ≈ ∑B

j=1 v j N j(x) ∈ Vh . Combining this with the relation

∫
�

(•)dm ≈
P∑

p=1

(•)mp, (14)

we arrive at the set of discrete equations

P∑
p=1

(

B∑
j=1

v̇ j N j Ni)|xp mp =
P∑

p=1

1

ρ0
[ J (bNi − σ (F )∇Ni)] |xp mp +

∫
∂N �

tNi, i = 1, . . . , B. (15)

By invoking the mass-lumping approximation, we approximate the left-hand side of Eq. (15) as

P∑
p=1

(

B∑
j=1

v̇ j N j Ni)|xp mp =
P∑

p=1

(

B∑
j=1

N j Ni)|xp mp v̇ j =
B∑

j=1

Mij v̇ j ≈ mi v̇ i, i = 1, . . . , B, (16)

where Mij := (
∑P

p=1 N j Ni)xp mp and mi := ∑B
j=1 Mij .

Combining the spatial discretization above with time discretization, we now have enough ingredients to devise an explicit 
time-integration scheme; Algorithm 1 reports the resulting algorithm that employs the symplectic Euler method.
6



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Algorithm 1: MPM Algorithm.

Input: Deformation gradient F p
n , velocity v p

n , and position xp
n for each material point p = 1, . . . , P at time instance tn

Output: Deformation gradient F p
n+1, velocity v p

n+1, and position xp
n+1, p = 1, . . . , P at time instance tn+1

1 Transfer Lagrangian kinematics to the Eulerian grid by performing a ‘particle to grid’ transfer: Compute for i = 1, . . . , B

mi,n =
P∑

p=1

Ni(xp
n )mp

mi,n v i,n =
P∑

p=1

Ni(xp
n )mp v p

n

f σ
i,n = −

P∑
p=1

J (F p
n )

ρ0
σ (F p

n )∇x Ni(xp
n ) mp

f e
i,n =

P∑
p=1

J (F p
n )

ρ0
b(xp

n )Ni(xp
n ) mp

2 Solve Eulerian governing equations by computing for i = 1, . . . , B

v̇ i,n+1 = 1

mi,n
( f σ

i,n + f e
i,n)

�v i,n+1 = v̇ i,n+1�tn

v i,n+1 = v i,n + �v i,n+1

3 Update the Lagrangian velocity and deformation gradient by performing a ‘grid to particle’ transfer: Compute for p = 1, . . . , P

v p
n+1 =

B∑
i=1

Ni(xp
n )v i,n+1

F p
n+1 = (1 +

B∑
i=1

v i,n+1 ⊗ ∇x Ni(xp
n )�tn)F p

n

4 Update Lagrangian positions for p = 1, . . . , P

xp
n+1 = xp

n + �t v p
n+1

3. Reduced-order model

We now propose a methodology for model reduction applicable to the material point method that relies on constructing 
a nonlinear approximation to the deformation map, as well as a family of projection and hyper-reduction strategies.

3.1. Kinematics: low-dimensional manifold

In analogue to constructing low-dimensional nonlinear manifolds for finite-dimensional state spaces [68], one can 
construct a nonlinear manifold that restricts any element of the reference domain �0 to evolve on a low-dimensional 
manifold; this can be achieved via an implicit neural representation. We first denote the approximated deformation map as 
φ̃ : �0 × T ×D →Rd with φ̃(·; ·, μ) ∈ S(μ), ∀μ ∈D and

φ̃(·; t,μ) : X �→ x(t,μ) (17)

:�0 → �̃t(μ) ⊆ Rd, (18)

where �̃t(μ) ⊆Rd denotes the deformed domain corresponding to the approximated solution at time t ∈ T and parameter 
instance μ ∈D, and enforce the kinematic constraint

φ̃(X; ·, ·) ∈ M(X) := {g(X; ŷ) | ŷ ∈Rr} ⊆ Rd, ∀X ∈ �0, (19)

where g : �0 ×Rr →Rd denotes a parameterization function for a low-dimensional manifold of dimension r(� P ).
Pragmatically, the kinematic restriction (19) implies that there exist generalized coordinates x̂ : T ×D →Rr such that

φ̃(X; t,μ) = g(X; x̂(t,μ)), ∀X ∈ �0, ∀t ∈ T , μ ∈ D. (20)
7



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 2. Manifold-parameterization function g maps the undeformed position X and the generalized coordinates x̂ to the deformed position x. We can 
interpret this approximation as an implicit neural representation, as an input argument is the (continuous) domain of the function, and the mapping will 
be learned using neural networks as described in Section 4.

Fig. 2 schematically illustrates the manifold-parameterization function g underpinning the proposed kinematic constraint.
Assuming continuous differentiability of the parameterization function, Eq. (20) implies that the deformation gradient of 

the approximate solution can be calculated analytically as

F̃ : (X, t,μ) �→ ∇φ̃(X; t,μ) ≡ ∇ g(X; x̂(t,μ))

:�0 × T ×D → Rd×d,
(21)

where ∇(·) ≡ ∂
∂ X (·) denotes the gradient with respect to the undeformed position, and that the velocity of the approximated 

solution can be calculated as

˙̃φ(X; t,μ) ≡ ∂ g

∂ x̂
(X; x̂(t,μ)) ˙̂x(t,μ), ∀X ∈ �0, ∀t ∈ T , μ ∈ D, (22)

where ˙̂x(t, μ) denotes the generalized velocity.
Recall that we require the approximated deformation map to reside in the space of admissible trajectories such that 

φ̃(·; ·, μ) ∈ S(μ), ∀μ ∈ D. The boundary condition ˙̃φ(X; t, μ) = V (X, t; μ), ∀X ∈ ∂D�0(t; μ), ∀t ∈ T , ∀μ ∈ D can be sat-
isfied trivially by enforcing the associated boundary conditions to match the prescribed ones during the reduced-order 
simulation.

To satisfy the initial conditions

φ̃(X;0,μ) = X, ∀X ∈ �0(μ), ∀μ ∈ D
˙̃φ(X;0,μ) = V (X,0;μ), ∀X ∈ �0(μ), ∀μ ∈ D,

(23)

we represent the manifold-parameterization function as

g : (X, x̂) �→ g̃(X, x̂) + a(X;μ) + b(X;μ) f (t) (24)

where g̃ : �0 × Rr → Rd is the approximated manifold-parameterization function, a : �0 × D → Rd b : �0 × D → Rd , 
and f : T → R satisfies f (0) = 0 and ḟ (0) = 1 (e.g., f : t �→ t). Given the functional form (24), one can satisfy the initial 
conditions (23) at any parameter instance μ ∈D for any prescribed initial values of x̂(0, μ) and ˙̂x(0, μ) by setting

a(X;μ) = X − g̃(X, x̂(0;μ)), ∀X ∈ �0, ∀μ ∈ D

b(X;μ) = V (X,0;μ) − ∂ g

∂ x̂
(X; x̂(0,μ)) ˙̂x(0,μ), ∀X ∈ �0, ∀μ ∈ D.

(25)

Additionally, we can obtain a good approximation of the initial boundary conditions utilizing g̃ alone by choosing x̂(0; μ)

and ˙̂x(0; μ) that minimize the L2-norm of a and b for any μ ∈D, i.e.,
8



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 3. Given the generalized coordinates x̂, the approximated deformation map allows us to recover the current position of an arbitrary point from the 
undeformed domain (Eq. (20)). Other kinematic information, such as the deformation gradient and the velocity, can also be recovered via differentiating 
the approximated deformation map (Eqs. (21) and (22)). In addition, given an arbitrary point from the deformed domain, we can invert the approximated 
deformation map to obtain its undeformed position. The approximated deformation map is invertible as long as the approximated deformation map is 
non-degenerate, i.e., the determinant of the deformation gradient J is nonzero.

Fig. 4. Reduced-order dynamics (Algorithm 2).

x̂(0;μ) ∈ argmin
ŷ

∫
�0(μ)

‖X − g̃(X, ŷ)‖2dX

˙̂x(0,μ) ∈ argmin
˙̂y

∫
�0(μ)

‖V (X,0;μ) − ∂ g

∂ x̂
(X; x̂(0,μ)) ˙̂y‖2dX .

(26)

In practice, we approximate these integrals via numerical quadrature.

Remark (Recover kinematics of any material point). We emphasize that—because this approach approximates the entire de-
formation map—given the value of the generalized coordinates x̂(t, μ) and its time derivative ˙̂x(t, μ), we can compute the 
displacement, the deformation gradient, and the velocity for any element of the reference domain X ∈ �0 via Eqs. (20), (21), 
and (22), respectively (Fig. 3). Further, assuming the parameterization function g is bijective between �0 and �̃t(μ) for 
a given value of the generalized coordinates x̂(t, μ), we can even invert the approximated deformation map to obtain the 
undeformed position of an arbitrary point in the deformed domain �̃t (μ). Consequently, our approach supports adaptive 
quadrature for computing full-space dynamics as well as super-resolution.

3.2. Dynamics

We compute the dynamics needed to evolve the generalized coordinates and velocity in three steps (see Fig. 4): Calculate 
full-space kinematics at quadrature points (Section 3.2.2), Calculate the full-space dynamics for a small number of ‘sample 
material points’ (Section 3.2.3), and Calculate the reduced-space dynamics (Section 3.2.4). The selection of sample material 
points is described in Section 3.2.1.

Algorithm 2 presents the complete algorithm for generating reduced-order dynamics. We note that displacement and 
velocity in the full space can always be decoded from the generalized coordinates, e.g., for rendering, computing quantities 
of interest.

3.2.1. Hyper-reduction
A common theme across all three steps in the reduced-order dynamics (Fig. 4 and Algorithm 2) is that only a subset 

of the original material points is required for computation. This opportunity arises from Step 3: because we only need to 
update a small number (i.e., r � P ) of generalized coordinates, we can drastically undersample the full-space kinematics, yet 
9



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Algorithm 2: Reduced-order-model dynamics.
Input: Generalized velocity v̂n , generalized coordinates x̂n .
Output: Generalized velocity v̂n+1, generalized coordinates x̂n+1.

1 Calculate full-space kinematics at quadrature points via either Algorithm 3 or Algorithm 4.

2 Calculate the full-space dynamics for sample material points to obtain v p,trial
n+1 and xp,trial

n+1 for p ∈ P using Algorithm 5.

3 Calculate the reduced-space dynamics by projecting v p,trial
n+1 and xp,trial

n+1 onto the reduced space via either Algorithm 6 or Algorithm 7.

Fig. 5. The sample material points P are shown on the right. Note that both the top and the bottom kinematic boundaries are sampled.

retain an overdetermined least-squares problem for this dynamics projection. As such, we achieve significant computational-
cost savings by performing this projection using a small subset of the original material points, which we refer to as the 
‘sample material points’ indexed by P ⊆ {1, . . . , P }, where r

d ≤ |P| � P . This ensures the reduced-order simulation incurs 
P -independent computational complexity; the set of approaches that enable reduced-order models to operate on a small 
subset of thee domain is often referred to as hyper-reduction in the literature [106].

As a consequence of employing a small number of material points in Step 3, the second step of Algorithm 2 also only 
requires computing the dynamics for the small number of sample material points belonging to the set P . To calculate these 
dynamics updates, Step 1 of Algorithm 2 requires computing kinematic information only at quadrature points that share 
Eulerian basis-function support with the sample material points.

While more advanced methods for choosing sample material points P exist [4,18], we adopt a straightforward stochastic 
sampling scheme due to its simplicity, wherein we re-sample at every time step to ensure good coverage of the domain. If 
kinematic boundaries exist, special attention is given to them by ensuring that the material points from these boundaries 
are included in P . In particular, these kinematic material points’ Dirichlet boundary conditions are strictly enforced during 
the full-space update (Section 3.2.3).

Fig. 5 displays an example of the sample material point set P from one of the experiments that will be discussed in 
Section 5.

3.2.2. Calculate full-space kinematics at quadrature points
To compute the dynamics of the sample material points P ⊆ {1, . . . , P }, the equation of motion has to be integrated (13). 

We can discretize the spatial domain (14) with either Lagrangian quadrature points defined by the reference configuration or 
Eulerian quadrature points defined by the current configuration. Consequently, in the process of numerically evaluating the 
integral (15), we can use a quadrature rule defined either on the Lagrangian quadrature points or the Eulerian quadrature 
points. Note that the original MPM algorithm adopts the Lagrangian quadrature approach where the material points serve 
as the Lagrangian quadrature points.

Formally, we can discretize the weak form (13) using quadrature points:

P Q∑
p=1

(

B∑
j=1

v̇ j N j Ni)|xQ ,p mQ ,p =
P Q∑

p=1

1

ρ0
[ J (bNi − σ (F )∇Ni)] |xQ ,p mQ ,p +

∫
tNi, i = 1, . . . , B, (27)
∂N �

10



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 6. Lagrangian quadrature points (left) vs. Eulerian quadrature points (right). All depicted quadrature points are required to compute the dynamics for 
the depicted sample material point. Note that in the Lagrangian quadrature approach, the sample material point itself will also serve as a quadrature point, 
which is not the case with the Eulerian quadrature approach. Both domains shown are the deformed domain �t .

where P Q denotes the number of the quadrature points and the left superscript (·)Q indicates quantities related to the 
quadrature points. Note that Eq. (27) generalizes Eq. (15) from the original material point method to allow for hyper-
reduction and alternative quadrature rules.

3.2.2.1. Quadrature points via Lagrangian material points
The first approach is similar to that employed by the original MPM algorithm. Here, we use the neighboring material 

points to define the quadrature rule (Fig. 6 left). Formally, we consider the neighbors of the sample material points N ⊆
{1, . . . , P }, which we define as the subset of all material points that share Eulerian basis-function support with the sample 
material points (with P ∩N = ∅).

Together, the sample material points and the neighboring material points form the set of the quadrature points, i.e., 
xQ ,p

n = x�(p)
n , p = 1, . . . , P Q , where P Q = |P ∪ N | and � : {1, . . . , P Q } → P ∪ N is a bijective mapping between the two 

sets.
Algorithm 3 provides the algorithm that identifies these quadrature points and obtains their kinematic information from 

the approximated deformation map.

Algorithm 3: Full-space kinematics at Lagrangian quadrature points (via tracking material points).
Input: Generalized velocity v̂n , generalized coordinates x̂n .
Output: Quadrature-point kinematics mQ ,p

n , xQ ,p
n , v Q ,p

n , F Q ,p
n for p = 1, . . . , P Q

1 Compute the position xp
n for each sample material point p ∈P at time instance tn by evaluating (20) for X = X p , p ∈ P and t = tn .

2 Identify the basis functions I needed to compute dynamics for the sample material points, i.e., I = {i ∈ {1, . . . , B} | ∃p ∈P s.t. Ni(xp
n ) �= 0}.

3 Identify the neighbor material points set N , i.e., N = {p ∈ {1, . . . , P } \P | ∃i ∈ I s.t. Ni(g(X p; ̂xn)) �= 0}.

4 Compute the deformation gradient F p
n and the velocity v p

n for each sample and neighbor material point at time instance tn by evaluating (21) and 
(22) for X = X p , p ∈ P ∪N , and t = tn .

5 Set the quadrature point kinematics to be mQ ,p = m�(p) , xQ ,p
n = x�(p)

n , v Q ,p
n = v�(p)

n , F Q ,p
n = F �(p)

n for p = 1, . . . , P Q , where P Q = |P ∪N | and 
� : {1, . . . , P Q } → P ∪N is a bijective mapping between the two sets.

This approach is most similar to the original emulated MPM approach, and it can incur an operation count independent 
of the original number of material points P and Eulerian basis functions B . However, it does require computing (and 
tracking) the set of neighboring material points. In the worst case, tracking would result in P -dependent complexity due 
to the difficulty of ascertaining a priori the set of neighboring material points that will ever be encountered for a targeted 
sample point for any possible online trajectory.

3.2.2.2. Quadrature points via Eulerian quadrature points
To avoid the costly tracking of these neighboring material points, we present an alternative that generates Eulerian 

quadrature points instead of the Lagrangian quadrature points (Fig. 6 right). The resulting quadrature rules discretize the 
Eulerian configuration instead of the Lagrangian configuration. We generate � quadrature points per dimension and per 
background grid cell. These quadrature point locations are evenly distributed such that the distance between each pair of 
neighboring quadrature point is �x

�
, where �x is the grid-cell width. Therefore, for each quadrature point, we have its 

current position xQ ,p and its volume V Q ,p = 1
�d V c , where V c = (�x)d denotes the volume of the grid cell.

To compute the undeformed position of the Eulerian quadrature points in the reference configuration, we can invert 
the approximated deformation by computing X Q ,p such that g(X Q ,p; ̂x) = xQ ,p . Other kinematic quantities can then 
11



be computed using Equation (21) and Equation (22). The mass mQ ,p of each quadrature point can be computed as 
mQ ,p = ρ0

J Q ,p
n

V Q ,p . These Eulerian quadrature points can then be used the same way as the Lagrangian quadrature points to 
discretize the weak form of the equation of motion (27).

Algorithm 4 presents the associated algorithm. In contrast to the first approach, this approach does not require tracking 
any neighboring material points. Instead, leveraging the invertibility of the deformation map, we can generate quadrature 
points necessary for updating the dynamics of the sample material points. Consequently, the approach can incur an opera-
tion count independent of the original number of material points P and Eulerian basis functions B without any additional 
tracking.

Algorithm 4: Full-space kinematics at Eulerian quadrature points (via inverting the deformation-map approximation).
Input: Generalized velocity v̂n , generalized coordinates x̂n .
Output: Quadrature-point kinematics mQ ,p , xQ ,p

n , v Q ,p
n , F Q ,p

n , p = 1, . . . , P Q

1 Compute the position xp
n for each sample material point p ∈P at time instance tn by evaluating (20) for X = X p , p ∈ P and t = tn .

2 Identify the basis functions I needed to compute dynamics for the sample material points, i.e., I = {i ∈ {1, . . . , B} | ∃p ∈P s.t. Ni(xp
n ) �= 0}.

3 Define a quadrature rule comprising quadrature points and their volumes xQ ,p
n ∈ �, V Q ,p ∈R+ , p = 1, . . . , P Q , used to assemble the governing 

equations at the sample nodes I . Compute the undeformed positions of the quadrature points X Q ,p
n by solving g(X Q ,p

n ; ̂xn) = xQ ,p
n , 

p = 1, . . . , P Q .
4 Compute the deformation gradient F Q ,p

n and the velocity v Q ,p
n for each quadrature point at time instance tn by evaluating (21) and (22) for 

X = X Q ,p
n and t = tn .

5 Compute the mass mQ ,p for each quadrature point, mQ ,p = ρ0

J Q ,p
n

V Q ,p where J Q ,p
n = det(F Q ,p

n ).

Remark. In addition to reducing the computational cost, the ability to generate arbitrary quadratures also enables adaptive 
refinement, which can be instrumental when there is extreme deformation (i.e., the determinant of the deformation gradient 
is large).

Remark. Since this work considers only elasticity, the quadrature points do not carry internal state variables; for plasticity, 
we will need to equip the approach with a mechanism to predict (continuous) fields of internal state variables. These fields 
could also be pursued with the mesh-independent low-dimensional manifold presented in Section 3.1.

3.2.3. Calculate the full-space dynamics
This section calculates the full-space dynamics by computing the trial velocities and positions for the material points 

belonging to the subset p ∈ P at tn+1. We deem these velocities and positions trial because they do not necessarily respect 
the kinematic constraint (19) induced by the low-dimensional manifold; they are simply the updates to the velocities and 
positions that would be computed from the current state by the full-order model, restricted to the set of sample material 
points. Algorithm 5 presents the MPM-style dynamics calculation that works for both the Lagrangian-quadrature kinematics 
and the Eulerian-quadrature kinematics.

Remark. A salient difference between the original MPM algorithm (Algorithm 1) and the dynamics calculation presented 
here is that this new approach no longer needs to evolve the deformation gradient explicitly. The deformation gradient is 
readily available from the approximated deformation map’s spatial gradient as derived in Eq. (21).

3.2.4. Calculate the reduced-space dynamics
This section proposes two approaches for computing reduced-space dynamics that project the newly computed full-space 

trial positions and velocities onto the low-dimensional manifold, which effectively updates the generalized coordinates and 
velocity.

Algorithm 6 presents an approach that performs a least-squares projection of the symplectic Euler updated position 
and velocity onto the manifold and its tangent space, respectively. This associates with a least-squares projection of the 
position and velocity, where the least-squares problem is linear for the velocity, but nonlinear for the position; we solve the 
latter using the Gauss–Newton method [90] with backtracking. We refer to this approach as the position-velocity projection 
scheme.

To reduce computational costs, we can linearize the nonlinear solve; Appendix A provides the derivation. The resulting 
approach is detailed in Algorithm 7. Since only velocity is involved in the least-squares projection, we refer to this projection 
scheme as the velocity-only projection scheme; in principle, it does not require the full-space trial positions xp,trial

n+1 , p ∈P .

4. Manifold-parameterization construction via implicit neural representation

In principle, the manifold-parameterization function g : �0 × Rr → Rd could be constructed in various ways. In this 
work, we employ a fully-connected deep-learning architecture (i.e., a multilayer perceptron) for this purpose (Fig. 7), which 
P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
12



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908

Algorithm 5: Full-space dynamics for sample material points.

Input: Quadrature-point kinematics mQ ,p , xQ ,p
n , v Q ,p

n , F Q ,p
n , p = 1, . . . , P Q

Output: Full-space trial positions xp,trial
n+1 and velocities v p,trial

n+1 for p ∈P .

1 Perform the ‘particle to grid’ transfer by computing for i ∈ I

mi,n =
P Q∑
p=1

Ni(xQ ,p
n )mQ ,p

mi,n v i,n =
P Q∑
p=1

Ni(xQ ,p
n )mQ ,p v Q ,p

n

f σ
i,n = −

P Q∑
p=1

J (F Q ,p
n )

ρ0
σ (F Q ,p

n )∇x Ni(xQ ,p
n ) mQ ,p

f e
i,n =

P Q∑
p=1

J (F Q ,p
n )

ρ0
b(xQ ,p

n )Ni(xQ ,p
n ) mQ ,p .

2 Perform the update step by computing for i ∈ I

v̇ i = 1

mi
( f σ

i,n + f e
i,n)

�v i = v̇ i�tn

v i,n+1 = v i,n + �v i .

3 Perform the ‘grid to particle’ transfer by computing for p ∈P

v p,trial
n+1 =

∑
i∈I

Ni(xp
n )v i,n+1

4 Update Lagrangian positions for p ∈P

xp,trial
n+1 = xp

n + �t v p,trial
n+1

Algorithm 6: Reduced-space dynamics via position-velocity projection.

Input: Full-space trial positions xp,trial
n+1 and velocities v p,trial

n+1 for p ∈ P .
Output: Generalized velocity v̂n+1 and generalized coordinates x̂n+1.

1 v̂n+1 and x̂n+1, which should satisfy the minimization problem

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P

‖ ∂ g

∂ x̂
(X p; x̂n)v̂ − v p,trial

n+1 ‖2
2. (28)

x̂n+1 ∈ arg min
x̂∈Rr

∑
p∈P

‖g(X p; x̂) − xp,trial
n+1 ‖2

2. (29)

Algorithm 7: Reduced-space dynamics via velocity-only projection.

Input: Full-space trial velocities v p,trial
n+1 for p ∈ P .

Output: Generalized velocity v̂n+1 and generalized coordinates x̂n+1.

1 x̂n+1 = x̂n + �tn v̂n+1, where v̂n+1 satisfies the minimization problem

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P

‖ ∂ g

∂ x̂
(X p; x̂n)v̂ − v p,trial

n+1 ‖2
2. (30)
13



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 7. The manifold parameterization function g is constructed via a multilayer perceptron neural network. When we use a continuously differentiable 
activation function, we can also compute the approximated deformation gradient and the approximated velocity everywhere. An encoder network e is used 
for generating x̂ from the simulation snapshot.

yields an implicit neural representation of the deformation map. Recently in the computer vision community, this partic-
ular network structure has been shown to successfully model the signed distance fields of various geometries [94] and 
the radiance fields of different viewing directions [83]. We adopt ELU activations to ensure continuous differentiability of 
the deformation-map approximation, which is needed to compute the deformation gradient and velocity as expressed in 
Eq. (21) and Eq. (22), respectively. As discussed in Section 3.1, the inputs to g correspond to the undeformed position 
of a material point X p ∈ �0 and the generalized coordinates x̂(t, μ) ∈ Rr , the latter of which is shared among all material 
points. The output of g is the approximated deformed position of the material point X p . Thanks to the network’s continuous 
differentiability, we also obtain the approximated deformation gradient and approximated velocity via backpropagation.

4.1. Encoder

To train the manifold-parameterization function g , we also need to define the value of the generalized coordinates x̂ at 
each time step tn for each training parameter instance μ ∈ Dtrain. We do so implicitly by introducing an encoder network 
e, which we train along with g . −→x (tn, μ) is the input to e, which is defined by concatenating the deformed positions of 
all the material points. Such an input encourages the injectivity of g with respect to x̂ since there exists a unique x̂ that 
corresponds to a simulation state, as defined by all the positions of the material points. This input is particularly suitable 
for history-independent problems, e.g., elasticity. For history-dependent problems, history-dependent variables can also be 
concatenated to the input to the encoder function to define a simulation state uniquely. In practice, it is not essential that 
all material point positions are included in the input; a subset could be selected in purpose to keep training tractable with 
highly resolved training simulations. In addition, the encoder structure also encourages a spatially and temporally coherent 
representation of the simulation state where contiguous generalized coordinates correspond to nearby simulation states [9].

Remark. While we utilize a neural-network-based encoder to associate each training sample with a value for the generalized 
coordinates, this association can also be made in other ways. For example, the generalized coordinates for each training 
sample can be defined by explicit, manual choice or by exposing the generalized coordinates for each training sample to 
the optimization algorithm as training variables along with the network weights. In practice, we found these approaches 
challenging to scale to problems involving a large number of training samples, as the number of optimization variables with 
this approach scales linearly with the number of training samples. Furthermore, it is inconvenient to enforce spatial and 
temporal coherence with these techniques.

4.2. Loss function

We compute the neural-network weights θ

g and θ


e of the functions g and e as the (approximate) solutions to the 
minimization problem

minimize
θg ,θe

∑
n=0,...,T , p=1,...,P , μ∈Dtrain

(‖gθg
(X p; x̂θe (tn,μ)) − φ(X p; tn,μ)‖2

2

+ λF ‖∇ gθg
(X p; x̂θe (tn,μ)) − ∇φ(X p; tn,μ)‖2

F

+ λv‖∂ gθg

∂ x̂
(X p; x̂θe (tn,μ))

x̂θe (tn+1,μ) − x̂θe (tn,μ)

�t
− φ̇(X p; tn,μ)‖2

2)

(31)
14



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Table 1
For the manifold-parameterization function g , we adopt a lightweight implicit neural 
representation network by using 5 fully connected hidden layers, each of size 30, 
where d ∈ {2, 3} and r denotes the reduced-order-model dimension. For the encoder 
function e, since the concatenated input vector can be arbitrarily large depending 
on the number of material points P in the full-order-model simulation, we avoid 
extensive usages of fully connected layers. Instead, several 1D convolution layers with 
a kernel size of 6 and a stride size of 2 are used to reduce the dimension of the input 
vector down to dconv , which is as low as possible but no smaller than 32. After that, 
a fully connected layer transforms the previous layer into a vector of size 32. Another 
fully connected layer then transforms the previous layer into a vector of the size r , 
the dimension of the generalized coordinate.

Encoder network e

1D convolution layers

Layer Kernel size Stride size

1 6 2
. . . 6 2
nconv 6 2

Fully-connected layers

Layer Input dimension Output dimension

nconv + 1 dconv 32
nconv + 2 32 r

Manifold-parameterization function g

Fully-connected layers

Layer Input dimension Output dimension

1 d + r 30
2 30 30
3 30 30
4 30 30
5 30 d

where x̂θe (tn, μ) := eθe (
−→x (tn, μ)), Dtrain ⊆ D denotes the parameter instances for training, at which the full-order model 

has been solved and solutions are available, and λF , λv ∈ R+ denote penalty parameters for the deformation gradient and 
velocity, respectively.

The deformation-gradient penalty λF serves to enable the network to generate a manifold that can accurately represent 
the spatial gradients (Eq. (21)), which is essential for both Lagrangian-quadrature kinematics (Algorithm 3) and Eulerian-
quadrature kinematics (Algorithm 4). The velocity penalty λv serves to enable the network to generate a manifold whose 
tangent space can accurately capture the velocity (Eq. (22)). This concept could be applied to higher-order spatiotemporal 
derivatives if desired. The practical choices of λF and λv are detailed in the result section (Section 5).

Note that the x̂(tn+1,μ)−x̂(tn,μ)
�t term is a finite difference approximation of the generalized velocity. Such an approximation 

mitigates the truncation error incurred by the linearization underpinning the velocity-only projection scheme for reduced-
space dynamics (Appendix A).

5. Numerical experiments

We demonstrate the robustness of the proposed reduced-order approach on several large-deformation nonlinear elasticity 
problems with complex geometry. The particular constitutive law we adopt is the fixed corotated hyperelastic energy by 
Stomakhin et al. [116]; in principle, any hyperelastic model is compatible with the proposed approach without modification. 
We employ the open-source explicit MPM implementation by Wang et al. [126] to define our baseline full-order model. 
Both the full-order and reduced-order models run on 12 threads on a 2.30 GHz Intel Xeon E5-2686 v4 CPU. In addition, 
the neural network portion of the reduced-order model pipeline—which comprises evaluation, inversion, and differentiation 
of the deformation-map approximation—is implemented using the LibTorch library [95] and runs on a single NVIDIA Tesla 
V100 GPU.

Table 1 lists the detailed network structure of the manifold-parameterization function g and the encoder function e. 
We adopt this network structure for all experiments presented in this work. The rest of the training details are listed in 
Appendix B.

For hyper-reduction (Section 3.2.1), we find sampling at least 5 material points from each kinematic boundary generates 
stable reduced-order dynamics. For the Eulerian quadrature point scheme (Section 3.2.2), we use � = 2, i.e., 2 quadrature 
points per cell per dimension. For the position-velocity projection scheme (Section 3.2.4), we use a simple linear interpola-
tion of the previous generalized coordinates as the initial guess, x̂guess = 2x̂n − x̂(tn−1), and the solver typically converges in 
2–3 iterations.
15



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Table 2
Material properties and discretization parameters. Material points are initially positioned through the Poisson disk sampling approach [14] by sampling a 
fixed number of particles per grid cell per dimension [61]. The time step size is computed from the stability analysis based on the speed of the elastic 
wave and the element characteristic length scale [33].

Experiment Geometry Young’s 
modulus

Poisson 
ratio

# of 
particles

Grid cell 
width

Particles per cell 
per dimension

Time step 
size

Time steps 
per simulation

# of training 
simulations

# of testing 
simulations

Section 5.1 Cylinder 12500 Pa 0.3 1,368 0.04 cm 2 1
144 s 30 24 6

Section 5.2 Cuboid 12500 Pa 0.3 1,757 0.04 cm 2 1
144 s 30 29 7

Section 5.3 Cylinder 12500 Pa 0.3 1,368 0.04 cm 2 1
144 s 432 12 24

Section 5.4 Tower 80000 Pa 0.2 3,076,115 0.48 cm 3 1
24 s 80 16 4

Fig. 8. The reduced-order simulation handles a wide range of gravity values. All snapshots are taken at the 30th time step (t = 0.208 s).

All reported errors in the following sections correspond to the accumulated position errors (%) of the test simulations 
executed at parameter instances not included in the set employed for training, i.e.,

position error (%) = 100 ∗

√ ∑
n=0,...,T , p=1,...,P , μ∈Dtest

‖g(X p; x̂(tn,μ)) − φ(X p; tn,μ)‖2
2

√ ∑
n=0,...,T , p=1,...,P , μ∈Dtest

‖φ(X p; tn,μ)‖2
2

.

Here, Dtest ⊆ D with Dtest ∩ Dtrain = ∅ denotes the set of test parameter instances. Note that this approach to error esti-
mation is not practical for real applications, as it requires executing the full-order model and evaluating the discrepancy 
between the full-order and reduced-order solutions for all material points at every time instance. Future work will pursue 
applying approaches that generate low-cost, statistically validated models of the ROM error [37,93].

5.1. Gravity

We conduct our first set of numerical experiments on an elastic cylinder with a radius of 1 cm and a height of 4 cm. Its 
material and discretization parameters are listed in Table 2. The elastic cylinder is attached to a vertical wall on one side 
and deforms under the influence of a downward gravity (Fig. 8).

We consider the parameterized problem μ = g ∈D ⊆R+ , where g denotes the magnitude of the gravitational force. We 
generate training and testing data via uniform sampling of 30 points in the interval g ∈ [1, 10] m/s2. For each value of g , 
we execute a simulation of 30 time steps. Therefore, a total of 930 simulation snapshots are generated, including the initial 
conditions. We then randomly split the dataset of 30 simulations into an offline training dataset of 24 full simulations and 
an online testing dataset of 6 full simulations.

5.1.1. The effect of gradient penalties
In Fig. 9, we study the influence of offline training parameters on the accuracy of the online reduced-order simulation. 

The dimension of the generalized coordinates is fixed to be 7; similar trends are observed for other generalized-coordinates 
dimensions. After training, we conduct reduced-order simulations using the four different combinations proposed in Sec-
tion 3.2 and Algorithm 2. To isolate the source of error, we do not conduct hyper-reduction here.
16



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 9. The effect of gradient penalties during training. The temporal penalty term λv improves the accuracy of the velocity-only projection schemes (c and 
d) but not the position-velocity projection schemes (a and b). The spatial penalty term λF improves both projection schemes. The Lagrangian (a and c) and 
the Eulerian (b and d) quadrature approaches yield similar results. Note that the experiment setup considers the parameterized problem μ = g ∈ D ⊆R+ , 
where g denotes the magnitude of the gravitational force. No hyper-reduction is conducted.

Fig. 10. Increasing the dimension of the generalized coordinates improves the accuracy due to larger manifold dimensions.

Training with a nonzero value of the velocity-penalty parameter λv significantly improves the accuracy of the velocity-
only projection technique of Algorithm 7 (Fig. 9 c and d). By contrast, the position-velocity projection scheme of Algorithm 6
(Fig. 9 a and b) is less sensitive to the choice of λv . Such observations hold for both the Lagrangian quadratures and the 
Eulerian quadratures. This numerical result aligns well with the theoretical analysis of linearization (Appendix A), because 
the velocity-only projection technique relies primarily on the accuracy of the velocity projection. Furthermore, training with 
a nonzero value of the deformation-gradient penalty λF improves all four algorithm combinations (Fig. 9 a, b, c, and d), likely 
due to the fact that this penalty encourages better deformation-gradient approximations that are essential for defining the 
quadrature-point kinematics.

5.1.2. The effect of the generalized coordinates dimension
Fig. 10 demonstrates the effect of the generalized coordinates dimension r, which is a key hyperparameter of the network 

structure (Section 4). We train networks with different generalized coordinates dimensions while fixing λv to be 0.01 and λF

to be 100. Afterward, the trained networks are tested for reduced-order simulations. In order to isolate the source of error, 
hyper-reduction is not applied. Fig. 10 shows that the four different algorithm combinations from Algorithm 2 demonstrate 
the same trend: increasing the generalized coordinates dimension improves the simulation accuracy because the network 
has a larger manifold dimension.
17



Fig. 11. The effectiveness of hyper-reduction is evidenced by the fact that using 10 sample material points yields less than 1% error, and using just 100 
points yields the same accuracy as no hyper-reduction, where all 1,368 material points are used for projection.

5.1.3. The effect of hyper-reduction
Fig. 11 reports the influence that the number of sample material points has on the accuracy of the reduced-order simu-

lations. After the offline training with a setup of λv = 0.01, λF = 100, r = 4, we conduct online, reduced-order simulations 
with various numbers of sample material points. Notably, with just 10 sample material points, all four quadrature and pro-
jection combinations yield an error of less than 1%. In addition, using just 100 points delivers the same level of accuracy as 
no hyper-reduction, i.e., all 1,368 points’ dynamics are computed (Section 3.2.3) and used for projection onto the generalized 
coordinates (Section 3.2.4).

5.1.4. Hyperparameter summary
To summarize all the offline and online hyperparameter options, we plot all the choices together (Fig. 12). Section 5.1.1, 

Section 5.1.2, and Section 5.1.3 each presents a “slice” of the hyperparameter study in Fig. 12 in order to articulate the effect 
of a particular parameter.

As shown in Fig. 12, independent of quadrature and projection combinations, training with a generalized-coordinate 
dimension of r = 1 always yields a worse result, e.g., (100, 0.01, 1) vs. (100, 0.01, 4), (100, 0.01, 1) vs. (100, 0.01, 7). There-
fore, the default training strategy should use r > 1. Unlike the position-velocity projection scheme (Fig. 12 a and b), the 
velocity-only projection scheme (Fig. 12 c and d) also consistently yields better result when training with a positive tempo-
ral gradient penalty λv > 0, e.g. (0, 0.0, 4) vs. (0, 0.01, 4), (0, 0.0, 7) vs. (0, 0.01, 7). Therefore, the default training strategy 
should use a positive temporal gradient penalty, especially when using velocity-only projection. The spatial gradient penalty 
also improves simulation accuracy, as discussed in Section 5.1.1. Therefore, the default training strategy should also include 
the spatial gradient penalty term, though its significance is lesser than the other terms (Fig. 12). With the training strategy 
mentioned earlier, all four reduced-order schemes achieve less than 1% error with just 10-100 sample material points. To 
obtain meaningful results, projection with just one point should be avoided as it can cause an error over 100%.

Since this section focuses on small-scale experiments that serve to support an extensive parameter study; as such, the 
opportunity for wall-time speedup of the reduced-order method over the full-order method is diminished. Experiments in 
Section 5.4 will report wall-time speedups for higher-dimension problems.

5.2. Torsion and tension

We apply tension and torsion to an elastic, rectangular cuboid (Fig. 13). The dimensions of the cuboid are 1 cm, 1 cm, 
and 4 cm. Its material and discretization properties are listed in Table 2.

We consider the parameterized problem μ = (v, ω) ∈D ⊆R2, where v denotes the translational velocity and ω denotes 
the rotational velocity. We generate simulation data by varying the translational velocity (v ∈ [0, 0.6] m/s) and the rotational 
velocity (ω ∈ [0, 2] rad/s). A total number of 36 simulations are generated via full factorial sampling of the translation 
and the rotational velocities with six evenly spaced samples in each dimension, i.e., v ∈ {0, 0.12, 0.24, 0.36, 0.48, 0.6} and 
ω ∈ {0, 0.4, 0.8, 0.12, 0.16, 2}. Each simulation consists of 30 time steps. Therefore, we generate a total of 1, 116 simulation 
snapshots, including the initial conditions. Afterward, we randomly assign 29 full simulations for training and 7 for testing. 
Specifically, the testing parameters are (v, ω) ∈ {(0.6, 2), (0.6, 0.4), (0.24, 0.8), (0.36, 1.6), (0.12, 0.8), (0.24, 1.2), (0.6, 1.6)}
and the rest are used for training.
P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
18



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908

Fig. 12. Hyperparameter summary. Training with positive spatial and temporal gradient penalties yields the best results. The size of the generalized coordi-
nates should be larger than 1 in order to attain the best accuracy. The use of at least 10 sample material points leads to high projection accuracy.

Fig. 13. The object undergoes tension and torsion at the same time.
19



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Table 3
Torsion and tension: errors of the reduced-order simulations on the testing dataset.

Scheme Sample material 
points count: 50

Sample material 
points count: 1,757 (all)

Lagrangian quad + position-velocity proj 0.28% 0.22%
Lagrangian quad + velocity-only proj 0.39% 0.29%
Eulerian quad + position-velocity proj 0.33% 0.24%
Eulerian quad + velocity-only proj 0.34% 0.27%

Fig. 14. The approximated deformation map is trained with low-resolution simulations (b). We can then run high-resolution, reduced-order simulations 
(c) that agree well with high-resolution, full-order simulations (d). The low-resolution simulation has 1,757 material points (Table 2). The high-resolution 
simulation increases the spatial resolution by two times in each dimension and has 13,900 material points in its initial setup. The Poisson disk sampling 
approach (Table 2) employed for generating initial material points has a random nature. None of the high-resolution material points shares identical initial 
positions with the low-resolution material points. In (a), we construct a super-resolution baseline by using the “tracer particle technique” [38,114], where 
we advect the high-resolution material points using the velocity field computed from the low-resolution simulation. In comparison, our reduced high-
resolution simulation has a higher accuracy than the baseline, both visually and quantitatively, measured by the position error from the high-resolution 
simulation ground truth. Note that our model (c) produces the same straight boundary as the ground truth testing data (d), as highlighted in the region 
inside the black rectangle. By contrast, the baseline model (a) has an incorrect curved boundary.

An approximated deformation map network is trained with λF = 100, λv = 0.01, r = 7 (cf. Section 5.1.4). We then conduct 
reduced-order simulations using this network. Table 3 reports the testing errors of the reduced-order simulations using 
different quadrature and projection combinations with and without hyper-reduction, demonstrating the effectiveness of the 
reduced-order simulation in modeling tension and torsion.

5.2.1. Zero-shot super-resolution
An advantage of training the deformation map instead of a finite number of material points is that we can easily adjust 

the resolution of the reduced-order simulation. We can infer the dynamics of an infinite number of material points so 
long as they belong to the reference domain. Consequently, even though the deformation map is trained on low-resolution 
simulations (Fig. 14b), we can run high-resolution reduced-order simulations (Fig. 14c) by using a finer MPM grid. Since 
the high-resolution simulation is never exposed to the training process, zero-shot super-resolution is achieved [72]. We 
construct a super-resolution baseline by advecting high-resolution material points on the velocity field computed by the 
low-resolution simulation (a), employing the popular “tracer particle technique” [38,114]. Both simulations are compared 
with the high-resolution ground truth (Fig. 14d). Table 4 lists the errors of the super-resolution simulations of all the 
reduced-order schemes and the baseline, across the entire testing dataset. All reduced-order methods outperform the super-
resolution baseline significantly. Fig. 14 demonstrates the visual superiority of our approach in comparison with the baseline 
approach.
20



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Table 4
Zero-shot super-resolution: errors of the reduced-order simulations on the high-resolution, 
torsion and tension testing dataset. Our framework outperforms the super-resolution base-
line without and with hyperreduction (using 50 sample material points of the original 13,900 
high-resolution material points).

Scheme Position error

Lagrangian quad + position-velocity proj 0.49%
Lagrangian quad + position-velocity proj (w/hyper-red) 0.53%
Lagrangian quad + velocity-only proj 0.48%
Lagrangian quad + velocity-only proj (w/hyper-red) 0.63%
Eulerian quad + position-velocity proj 0.47%
Eulerian quad + position-velocity proj (w/hyper-red) 0.50%
Eulerian quad + velocity-only proj 0.46%
Eulerian quad + velocity-only proj (w/hyper-red) 0.51%

Super-resolution baseline 2.04%

Fig. 15. The material is poked at the top by different forces, resulting in different deformed states. The material then recovers to its initial state because of 
elasticity.

5.3. Poke-and-recover

Poking is a frequent use case of the elasticity simulation where a force is applied in a particular direction at a small 
portion of the material and is released after a short period. The material then recovers to its undeformed state due to 
elasticity.

The elastic cylinder from Section 5.1 is poked at the top (Fig. 15). The poking force is characterized by the spherical 
coordinate, where f (rp, θ, φ) = (rp sin φ cos θ, rp sin φ sin θ, rp cosφ). The corresponding poking location, at which the force 
is applied, is (−rc cos θ, −rc sin θ, h), where rc and h are the radius and the height of the cylinder, respectively. rp is chosen 
such that the poked location moves at a constant speed of 4.8 cm/s. φ is fixed to be 1

12 π . The poking force is applied for 
0.25 s before it is released. After the force is released, the cylinder recovers to its initial state due to elasticity.

We consider the parameterized problem μ = θ ∈ D ⊆ [0, 2π). We generate simulation data via uniform sampling of θ
in [0, 2π) with an interval of 1

18 π , yielding a total of 36 simulations. We use 12 of these 36 simulations for training. The 
value of θ for these 12 simulations is evenly spaced with an interval of 1

6 π . The remaining 24 simulations are used for 
testing. The goal of this training and testing split is to gauge the ability of the proposed reduced-order model to respond to 
pokes at arbitrary values of θ . Each simulation consists of 432 time steps. Therefore, a total of 15, 588 simulation snapshots, 
including the initial conditions, are used for training and testing.

We first conduct offline training with λF = 100, λv = 0.01, r = 6 (cf. Section 5.1.4) and then run online reduced-order 
simulations. Table 5 reports the testing errors of the reduced-order simulations using different quadrature and projection 
combinations with and without hyper-reduction, demonstrating the effectiveness of the reduced-order simulation in mod-
eling the poke-and-recover problem.
21



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Table 5
Poke-and-recover: errors of the reduced-order simulations on the testing dataset.

Scheme Sample material 
points count: 50

Sample material 
points count: 1,368 (all)

Lagrangian quad + position-velocity proj 1.47% 1.07%
Lagrangian quad + velocity-only proj 1.47% 1.04%
Eulerian quad + position-velocity proj 1.67% 1.41%
Eulerian quad + velocity-only proj 1.55% 1.37%

Fig. 16. The temporal trajectory of the generalized coordinates x̂, visualized by its first two principal components. The time step number is annotated next 
to the trajectory. x̂ at time step 0 corresponds to the initial state (Fig. 15 left); x̂ at time step 50 corresponds to the deformed state (Fig. 15 middle); x̂ at 
time step 432 corresponds to the recovered state (Fig. 15 right). Under the poking force, the generalized coordinates move away from their initial values 
and then return to their initial values due to elasticity.

Fig. 17. Repetitive poking. The reduced-order model supports continual manipulation of the object. We demonstrate several snapshots from a 30-second 
simulation sequence. The object on the left (red) is the ground truth; the object on the right (blue) is the reduced-order simulation. The reduced-order 
simulation agrees well with the full-order simulation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

5.3.1. Reduced-space trajectory
Fig. 16 plots the trajectory of the generalized coordinates x̂ of a reduced poke-and-recover simulation. Since x̂ is high-

dimensional in general, we visualize x̂ by projecting it onto a 2D plane spanned by its first two principal components.
Under the influence of the poking force, the material takes up a deformed state in the full space −→x ; after the force 

is removed, the material then returns to its undeformed state. It is also desirable to maintain such a “return” property in 
the reduced space x̂, where x̂ returns to its initial value. In general, one state in the full space can correspond to multiple 
generalized coordinates, i.e., the approximate deformation map is not necessarily injective with respect to x̂. By using 
the encoder training scheme presented in Section 4.1, we can encourage injectivity and can indeed maintain the “return” 
property in the reduced space. As shown in Fig. 16, the generalized coordinates x̂ return to the origin, which maps to the 
undeformed state in the full space.
22



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 18. Repetitive poking of a more complex geometry [126]. The object on the left (red) is the ground truth; the object on the right (blue) is the 
reduced-order simulation.

Table 6
Continual poking and recovering: errors of the reduced-order simulations.

Scheme Sample material 
points count: 50

Sample material 
points count: 1,368 (all)

Lagrangian quad + position-velocity proj 1.72% 1.45%
Lagrangian quad + velocity-only proj 1.82% 1.41%
Eulerian quad + position-velocity proj 1.88% 1.81%
Eulerian quad + velocity-only proj 1.96% 1.74%

Table 7
Total offline cost: data generation and training. Data generation 
time includes generating 16 full-order simulations. Training time 
includes the time for training the manifold-parameterization func-
tion (Section 4). Note that the timing data is purely informative 
and calculated post-hod whereas the main goal of our work is not 
to optimize training time.

Data generation time Training time

1140.8 s 35558.9 s

5.3.2. Continual manipulation
One advantage of maintaining the “return” property is that even though the training data consists of simulations poking 

only once, we can actually run reduced-order simulations that poke repetitively. After each poke-and-recover sequence, the 
generalized coordinates x̂ return to their starting values, ready to be poked again in an arbitrary direction.

Therefore, we run a reduced-order simulation consisting of ten consecutive poke-and-recover sequences, where the pok-
ing direction is chosen each time randomly (Fig. 17). This simulation has 4320 time steps or 30 s in total. Table 6 reports its 
error in comparison with the full-order simulation. All quadrature and projection combinations produce good agreements 
with and without hyper-reduction. Note that no full-order simulation of 30 s is included in the training data. All training 
simulations are 3 s, demonstrating our framework’s robust generalization capability. Our work also handles more complex 
geometries (Fig. 18).

5.4. Large-scale experiments

To demonstrate the efficiency of the reduced-order simulation in comparison to the full-order simulation, we conduct 
large-scale experiments with a complex tower geometry (Fig. 19). The material and discretization parameters of the object 
are listed in Table 2. Table 7 details the data generation time and training time.

Both the top and the bottom of the object experiences Dirichlet boundary conditions. The top is kinematically moved 
under a fixed velocity while the bottom is stationary. The fixed velocity is parameterized by a spherical coordinate, v =
(r, θ, φ) = (r cosφ cos θ, r cosφ sin θ, r sin φ), where r ∈ [0.6, 0.8), θ ∈ [0, π2 ), and φ ∈ [− 2π

3 , −π
3 ).

We analyze the proposed approach in this parametrized setting (μ = (r, θ, φ) ∈ D ⊆ R3). We generate training data by 
running 16 simulations with different (r, θ, φ) triplets sampled using the Latin hypercube method [115]. We further sample 
another 4 simulations for testing purposes using the same approach.

An approximated deformation map network is trained with λF = 100, λv = 0.01, r = 6 (cf. Section 5.1.4). Afterward, 
we conduct systematic tests over the different reduced-order approaches and different numbers of sample material points 
(Fig. 20). All setups using the Eulerian quadratures (pentagon and cross) offer a significant speedup over the full-order 
model while maintaining accuracy. By contrast, due to their need to track every material point, Lagrangian quadrature 
approaches (circle and square) do not offer a reduction in computation complexity and do not offer speedup over the full-
order model. While velocity-only projection methods (square and cross) generally have a slightly higher error than position-
velocity projection methods (circle and pentagon), they are also computationally faster. Across all methods, the fewer sample 
material points, the faster the simulation and the higher the error. In particular, the reduced-order simulations employing 
23



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 19. An object with complicated geometry undergoes elastic deformation (visualized with mesh, cf. Fig. 5 for raw material point data). Each row records 
a different configuration in the testing dataset (i.e., unseen during training). Each column corresponds to a different time during the simulation. The leftmost 
column is the beginning of the simulation, while the rightmost column is the end of the simulation. In each snapshot, the white tower on the left is the 
full-order simulation, while the yellow tower on the right is the reduced-order simulation. The full-order model and the reduced-order model match overall 
in all configurations and at all times. However, the reduced model lacks secondary wrinkles that are present in the full-order model. More complex network 
architecture can be explored in order to capture these secondary features.

Fig. 20. Position error vs. wall time. Each data point corresponds to a particular reduced-order setup (quadrature choices, projection types, and the number 
of sample material points). Wall time is the average computational cost for every physical second of simulation. A real-time simulation requires the wall 
clock time to be 1 (green line). The red line indicates the wall clock time of the original simulation. Setups using Eulerian quadratures and velocity-only 
projection with fewer than 50 sample material points (blue cross and orange cross) reach the real-time criteria and are over 20 times faster than the 
full-order model while maintaining accuracy.

Eulerian quadratures and velocity-only projection with fewer than 50 sample material points (blue cross and orange cross) 
attain real-time performance and are over 20 times faster than the baseline full-order model. Fig. 19 displays all four testing 
simulations using the Eulerian quadratures and velocity-only projection with 50 sample material points (orange cross). 
Visually, the reduced-order simulations agree well with the full-order simulations while missing some secondary wrinkle 
24



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
Fig. 21. Nonlinear manifold vs. linear manifold. Replacing the nonlinear manifold-parameterization proposed in this work with a linear one leads to a 
significant performance decline. The linear manifold (c) struggles to approximate the highly nonlinear training data (a). By contrast, our proposed nonlinear 
manifold (b) accurately reconstructs the training data. The nonlinear manifold and the linear manifold both use a reduced-dimension of r = 6.

deformations. Further research can be conducted on increasing the complexity of the network to capture these secondary 
deformations [113,122].

Remark. Instead of computing the dynamics of over 3 million material points, we only need to calculate the dynamics of 
no more than 50 points (over 600,000 times reduction). However, the speedup number we observe is reduced to 20X. This 
discrepancy can be understood by the nonlocal nature of MPM, where a neighborhood of quadratures points is required for 
computing the dynamics of even just one material point. Consequently, in order to update the dynamics of 50 points, over 
20,000 quadrature points are involved in the particle to grid transfer. To achieve the full wall-clock performance potential 
of the reduced-order model, further research should consider adaptive quadrature rules that lower the total number of 
quadrature points involved.

Remark. We adopt a random sampling approach for choosing hyper-reduction sample material points (Section 3.2.1). While 
such a method is easy to implement, it does not guarantee optimality in terms of errors and computation costs. Future work 
should be conducted to select the optimal set of hyper-reduction points to minimize the position error and the computation 
cost.

5.4.1. Comparison
To compare the proposed framework with other model reduction methods, we first notice that there is no prior work on 

model reduction of MPM using the classical approach (Fig. 1a). As discussed in Section 1.3, the classical approach (e.g., POD) 
is unsuitable for model reduction of MPM due to the challenge of approximating the deformation gradients and achieving 
hyper-reduction. Consequently, we construct a baseline model using our approach (Fig. 1b) with a linear manifold. Essen-
tially, we replace the nonlinear manifold-parameterization function with a linear one. In practice, this amounts to replacing 
the multilayer neural-network-based manifold-parameterization function (Fig. 7) with a single linear layer (without acti-
vation), wherein we train only the weights and biases of a single layer; as such, it is similar to classical linear-subspace 
methods such as POD. Note that the nonlinear manifold and the linear manifold share the same reduced-dimension of 
r = 6.

As shown in Fig. 21, our nonlinear manifold significantly outperforms the linear one in terms of training accuracy, both 
quantitatively and visually. The linear approximation struggles to reconstruct the highly nonlinear deformation of the elastic 
object. We further attempted to deploy the trained linear manifold in the same setting as Fig. 20. However, simulations 
using the linear manifold all went unstable in just a few time steps and were unable to complete the simulation. This 
is somewhat anticipated since the projection-based dynamics (Section 3.2) further depend on the gradient information of 
the manifold-parameterization function. We thereby draw the conclusion that the robust, expressive nonlinear manifold 
25



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
(engineered via a deep neural network) proposed in this work is essential for building a manifold-parameterization function 
of the highly nonlinear deformation map.

6. Conclusions and future work

This work has presented—to our knowledge—the first projection-based reduced-order model for the material point 
method. In contrast with prior model reduction techniques that build a low-dimensional manifold of the discretization of the 
“deformation map”, we create a discretization-agnostic, continuously-differentiable, low-dimensional manifold of the “de-
formation map” itself based on implicit neural representations. We then utilize this low-dimensional manifold to drive the 
MPM simulation via optimal-projection-based dynamics, ensuring the simulated trajectory remains on the low-dimensional 
manifold associated with the deformation-map approximation. We propose two different quadrature approaches for com-
puting full-space kinematics, and two different projection approaches for computing reduced-space dynamics. Through the 
introduction of hyper-reduction, we demonstrate that this approach can drastically reduce the dimension of the MPM hy-
perelasticity simulations and offers an order-of-magnitude wall-time speedup.

Moving forward, we envision 3 exciting directions to improve our work. (1) Supporting more continuum mechanics phe-
nomena. We aim to extend our work to support other material behaviors, such as plasticity, fracture, contact, and collision. 
(2) Improving wall-time performance. This work focuses on the spatial model reduction of MPM. Future work should also 
consider a reduction in the temporal domain in order to take a larger time step size. Since the stress evaluation is completed 
on the CPU while the neural network evaluation is completed on the GPU, expensive CPU-GPU transfer is conducted at each 
time step. Future work might investigate a full GPU implementation to avoid the costly transfer. One may also consider 
expediting training time via more advanced data structures and optimization [74,77,86,122]. To improve training scalability, 
we can use hyperreduction samples as the input to the encoder instead of the full-order samples. (3) Extending the use 
of implicit neural representations in model reduction for other types of systems and discretization methods. Even though 
the proposed model reduction framework is designed for MPM, the proposed manifold parameterization function is, in fact, 
discretization independent. Therefore, we would like to go beyond MPM and explore its ability in model reduction of other 
continuum mechanics discretizations, such as the finite element method (FEM) and smoothed-particle hydrodynamics (SPH). 
For the same reason, we would also like to explore the manifold parameterization function’s ability to learn from simulation 
data with adaptive refinement.

CRediT authorship contribution statement

Peter Yichen Chen: Conceptualization, Methodology, Software, Writing. Maurizio Chiaramonte: Conceptualization, 
Methodology, Writing, Supervision. Eitan Grinspun: Conceptualization, Methodology, Supervision. Kevin Carlberg: Concep-
tualization, Methodology, Writing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank Henrique Teles Maia for proofreading the manuscript. This work was supported in part by the National Science 
Foundation (Grants CBET-17-06689 and CHS-1717178) as well as SideFX.

Appendix A. Projection linearization

Substituting x̂n+1 = x̂n + �tn v̂n+1 into Equation (29) yields

v̂n+1 ∈ arg min
v̂∈Rr

∑
p∈P

‖g(X p; x̂n + �tn v̂) − xp,trial
n+1 ‖2

2. (A.1)

Using Taylor’s theorem, we have

g(X p; x̂n + �tn v̂) − xp,trial
n+1 ≈ g(X p; x̂n) + �tn

∂ g

∂ x̂
(X p; x̂n)v̂ − xp,trial

n+1

= g(X p; x̂n) + �tn
∂ g

(X p; x̂n)v̂ − (xp
n + �tn v p,trial

n+1 )

∂ x̂

26



P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
= �tn
∂ g

∂ x̂
(X p; x̂n)v̂ − �tn v p,trial

n+1

= �tn(
∂ g

∂ x̂
(X p; x̂n)v̂ − v p,trial

n+1 )

Under this linearization, Equation (A.1) becomes Equation (30). Consequently, the effectiveness of velocity-only projection 
depends on the accuracy of such a linearization.

Appendix B. Training details

We implement the network in PyTorch [95] and train the network with the ADAM optimizer with an adaptive learning 
rate, decreasing from 1e − 3 to 1e − 6. We initialize the neural network’s weights using the Xavier initialization [44]. We 
conduct standard feature-scaling for the network’s input and output to ease the training process. Min-max normalization is 
performed for the reference positions, while standardization is conducted for the network’s output to have zero mean and 
unit variance.

References

[1] R. Abgrall, R. Crisovan, Model reduction using l1-norm minimization as an application to nonlinear hyperbolic problems, Int. J. Numer. Methods Fluids 
87 (2018) 628–651.

[2] D. Amsallem, J. Cortial, K. Carlberg, C. Farhat, A method for interpolating on manifolds structural dynamics reduced-order models, Int. J. Numer. 
Methods Eng. 80 (2009) 1241–1258.

[3] D. Amsallem, M.J. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Int. J. Numer. Methods Eng. 92 (2012) 
891–916.

[4] S.S. An, T. Kim, D.L. James, Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph. 27 (2008) 1–10.
[5] J. Barbič, Y. Zhao, Real-time large-deformation substructuring, ACM Trans. Graph. 30 (2011) 1–8.
[6] S. Bardenhagen, J. Brackbill, D. Sulsky, Shear deformation in granular materials, Technical Report, Los Alamos National Lab., NM, United States, 1998.
[7] M.F. Barone, I. Kalashnikova, D.J. Segalman, H.K. Thornquist, Stable Galerkin reduced order models for linearized compressible flow, J. Comput. Phys. 

228 (2009) 1932–1946.
[8] U. Baur, C. Beattie, P. Benner, S. Gugercin, Interpolatory projection methods for parameterized model reduction, SIAM J. Sci. Comput. 33 (2011) 

2489–2518.
[9] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 

1798–1828.
[10] P. Benner, L. Feng, S. Li, Y. Zhang, Reduced-order modeling and rom-based optimization of batch chromatography, in: Numerical Mathematics and 

Advanced Applications-ENUMATH, 2015, Springer, 2013, pp. 427–435.
[11] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (2015) 

483–531.
[12] M. Bergmann, C.H. Bruneau, A. Iollo, Enablers for robust POD models, J. Comput. Phys. 228 (2009) 516–538.
[13] M. Bergmann, L. Cordier, J.P. Brancher, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Phys. 

Fluids 17 (2005) 097101.
[14] R. Bridson, Fast Poisson disk sampling in arbitrary dimensions, SIGGRAPH Sketches 10 (2007).
[15] A. Bruns, P. Benner, Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm, Math. Comput. 

Model. Dyn. Syst. 21 (2015) 103–129.
[16] K. Carlberg, Adaptive h-refinement for reduced-order models, Int. J. Numer. Methods Eng. 102 (2015) 1192–1210.
[17] K. Carlberg, M. Barone, H. Antil, Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction, J. Comput. Phys. 330 (2017) 

693–734.
[18] K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor 

approximations, Int. J. Numer. Methods Eng. 86 (2011) 155–181.
[19] K. Carlberg, C. Farhat, A low-cost, goal-oriented ‘compact proper orthogonal decomposition’basis for model reduction of static systems, Int. J. Numer. 

Methods Eng. 86 (2011) 381–402.
[20] K. Carlberg, C. Farhat, J. Cortial, D. Amsallem, The GNAT method for nonlinear model reduction: effective implementation and application to compu-

tational fluid dynamics and turbulent flows, J. Comput. Phys. 242 (2013) 623–647.
[21] K. Carlberg, R. Tuminaro, P. Boggs, Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. 

Comput. 37 (2015) B153–B184.
[22] P.Y. Chen, J.D. Blutinger, Y. Meijers, C. Zheng, E. Grinspun, H. Lipson, Visual modeling of laser-induced dough browning, J. Food Eng. 243 (2019) 9–21.
[23] P.Y. Chen, M. Chantharayukhonthorn, Y. Yue, E. Grinspun, K. Kamrin, Hybrid discrete-continuum modeling of shear localization in granular media, 

J. Mech. Phys. Solids 153 (2021) 104404.
[24] Z. Chen, H. Zhang, Learning implicit fields for generative shape modeling, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2019, pp. 5939–5948.
[25] R.R. Craig Jr, M.C. Bampton, Coupling of substructures for dynamic analyses, AIAA J. 6 (1968) 1313–1319.
[26] N.P. Daphalapurkar, H. Lu, D. Coker, R. Komanduri, Simulation of dynamic crack growth using the generalized interpolation material point (gimp) 

method, Int. J. Fract. 143 (2007) 79–102.
[27] G. Daviet, F. Bertails-Descoubes, A semi-implicit material point method for the continuum simulation of granular materials, ACM Trans. Graph. 35 

(2016) 1–13.
[28] A. Dosovitskiy, J. Tobias Springenberg, T. Brox, Learning to generate chairs with convolutional neural networks, in: Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, 2015, pp. 1538–1546.
[29] M. Drohmann, B. Haasdonk, M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator 

interpolation, SIAM J. Sci. Comput. 34 (2012) A937–A969.
[30] N.B. Erichson, M. Muehlebach, M.W. Mahoney, Physics-informed autoencoders for Lyapunov-stable fluid flow prediction, arXiv preprint arXiv:1905 .

10866, 2019.
[31] R. Everson, L. Sirovich, Karhunen–Loeve procedure for gappy data, JOSA A 12 (1995) 1657–1664.
27

http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C1BEFFF5A7237C89B7955B850587ED5s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C1BEFFF5A7237C89B7955B850587ED5s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9943FC0C0E0D944C29B128A17DCACD88s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9943FC0C0E0D944C29B128A17DCACD88s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib511E774C251E94341CABD2C25F7BB1EDs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib511E774C251E94341CABD2C25F7BB1EDs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB63AC4E1B29189DD97A1DF4C280DF0A0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibFA5F61E13C538396F0BFBC05E1152697s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6044DC8A6973ED8D7BD15944ACFEA332s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C2E87E81A7FEE59696801A549D1CA24s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C2E87E81A7FEE59696801A549D1CA24s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3FCFA5C001317CA871DC2B4BF9256571s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3FCFA5C001317CA871DC2B4BF9256571s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD3BD89582B7B41B1C50EB104FC59894Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD3BD89582B7B41B1C50EB104FC59894Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib892333ED301277BBBE66FF35914E5ED6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib892333ED301277BBBE66FF35914E5ED6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6E696847B7E75BF93368F876DE0935EDs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6E696847B7E75BF93368F876DE0935EDs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3E223C80D5908DE7B0F2A662E768EF7As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8A34709B67E6203D8A95372EA0497B07s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8A34709B67E6203D8A95372EA0497B07s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibFBD51A31A62B6D67205222F40C5FC482s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib22B7C8BF916EB9E50A601A52E2955886s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib22B7C8BF916EB9E50A601A52E2955886s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib22671E64899014C2151557667F0D3A56s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9E752154B9C8E1355915ABCDD87F072Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9E752154B9C8E1355915ABCDD87F072Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C5E99A537AC3A3CD17EA4059C77A873s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3C5E99A537AC3A3CD17EA4059C77A873s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9FA1566316B35BA7A7960C7449E6A236s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9FA1566316B35BA7A7960C7449E6A236s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8FAD4E4CA77852CFB26D6BF017AA8858s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8FAD4E4CA77852CFB26D6BF017AA8858s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE3C722A1626B38B12804C7841A832942s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE3C722A1626B38B12804C7841A832942s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib535B95751D20F4CBA8234B03D2F68221s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3FEC54FB392B97A80C238B168B2D025Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3FEC54FB392B97A80C238B168B2D025Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib7082F159C01574EF780F367D4ABCB7C0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3058F8284DF3F345FF08575FCA59DD30s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3058F8284DF3F345FF08575FCA59DD30s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD622DD9F13F195B2BBE9AEF00FCD517Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD622DD9F13F195B2BBE9AEF00FCD517Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib359B3CE5A42A82B27429C87AE6ABCAE8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib359B3CE5A42A82B27429C87AE6ABCAE8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0F78F782F463ED7096ADB15160DD6203s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0F78F782F463ED7096ADB15160DD6203s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib521DA15895361F8933D15A715B9FA936s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib521DA15895361F8933D15A715B9FA936s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD2356B7359901FB6D81DAC8C27C0B0B0s1


P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
[32] F. Fang, C. Pain, I. Navon, A. Elsheikh, J. Du, D. Xiao, Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discontinuous 
finite element methods, J. Comput. Phys. 234 (2013) 540–559, https://doi .org /10 .1016 /j .jcp .2012 .10 .011, https://www.sciencedirect .com /science /article /
pii /S0021999112006006.

[33] Y. Fang, Y. Hu, S.M. Hu, C. Jiang, A temporally adaptive material point method with regional time stepping, in: Computer Graphics Forum, Wiley 
Online Library, 2018, pp. 195–204.

[34] Y. Fang, M. Li, M. Gao, C. Jiang, Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids, 
ACM Trans. Graph. 38 (2019) 1–13.

[35] Y. Fang, Z. Qu, M. Li, X. Zhang, Y. Zhu, M. Aanjaneya, C. Jiang, IQ-MPM: an interface quadrature material point method for non-sticky strongly two-way 
coupled nonlinear solids and fluids, ACM Trans. Graph. 39 (2020) 51:1–51:16.

[36] Y. Fei, Q. Guo, R. Wu, L. Huang, M. Gao, Revisiting integration in the material point method: a scheme for easier separation and less dissipation, ACM 
Trans. Graph. 40 (2021) 1–16.

[37] B.A. Freno, K.T. Carlberg, Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations, Comput. Methods 
Appl. Mech. Eng. 348 (2019) 250–296.

[38] C. Fu, Q. Guo, T. Gast, C. Jiang, J. Teran, A polynomial particle-in-cell method, ACM Trans. Graph. 36 (2017) 1–12.
[39] L. Fulton, V. Modi, D. Duvenaud, D.I. Levin, A. Jacobson, Latent-space dynamics for reduced deformable simulation, in: Computer Graphics Forum, 

Wiley Online Library, 2019, pp. 379–391.
[40] D. Galbally, K. Fidkowski, K. Willcox, O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. 

Numer. Methods Eng. 81 (2010) 1581–1608.
[41] M. Gao, Sparse Paged Grid and Its Applications to Adaptivity and Material Point Method in Physics Based Simulations, The University of Wisconsin-

Madison, 2018.
[42] M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, C. Jiang, GPU optimization of material point methods, ACM Trans. Graph. 37 (2018) 1–12.
[43] T.F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, J.M. Teran, Optimization integrator for large time steps, IEEE Trans. Vis. Comput. Graph. 21 (2015) 

1103–1115.
[44] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
[45] C. Gu, Model Order Reduction of Nonlinear Dynamical Systems, University of California, Berkeley, 2011.
[46] S. Gugercin, A.C. Antoulas, C. Beattie, H_2 model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl. 30 (2008) 609–638.
[47] K.C. Hall, J.P. Thomas, E.H. Dowell, Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows, AIAA J. 38 (2000) 

1853–1862.
[48] X. Han, T.F. Gast, Q. Guo, S. Wang, C. Jiang, J. Teran, A hybrid material point method for frictional contact with diverse materials, Proc. ACM Comput. 

Graph. Interact. Tech. 2 (2019) 1–24.
[49] D. Hartman, L.K. Mestha, A deep learning framework for model reduction of dynamical systems, in: 2017 IEEE Conference on Control Technology and 

Applications (CCTA), 2017, pp. 1917–1922.
[50] P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 

2012.
[51] G.A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering science, Meccanica 37 (2002) 489–490.
[52] Y. Hu, L. Anderson, T.M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, F. Durand, Difftaichi: differentiable programming for physical simulation, arXiv preprint 

arXiv:1910 .00935, 2019.
[53] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, C. Jiang, A moving least squares material point method with displacement discontinuity and two-way 

rigid body coupling, ACM Trans. Graph. 37 (2018) 1–14.
[54] Y. Hu, T.M. Li, L. Anderson, J. Ragan-Kelley, F. Durand, Taichi: a language for high-performance computation on spatially sparse data structures, ACM 

Trans. Graph. 38 (2019) 1–16.
[55] Y. Hu, J. Liu, A. Spielberg, J.B. Tenenbaum, W.T. Freeman, J. Wu, D. Rus, W. Matusik, Chainqueen: a real-time differentiable physical simulator for soft 

robotics, in: 2019 International Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 6265–6271.
[56] Y. Hu, J. Liu, X. Yang, M. Xu, Y. Kuang, W. Xu, Q. Dai, W.T. Freeman, F. Durand, Quantaichi: a compiler for quantized simulations, ACM Trans. Graph. 

40 (2021) 1–16.
[57] Y. Hu, X. Zhang, M. Gao, C. Jiang, On hybrid Lagrangian-Eulerian simulation methods: practical notes and high-performance aspects, in: ACM SIG-

GRAPH 2019 Courses, 2019, pp. 1–246.
[58] D.L. James, J. Barbič, D.K. Pai, Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources, 

ACM Trans. Graph. 25 (2006) 987–995.
[59] C. Jiang, T. Gast, J. Teran, Anisotropic elastoplasticity for cloth, knit and hair frictional contact, ACM Trans. Graph. 36 (2017) 1–14.
[60] C. Jiang, C. Schroeder, A. Selle, J. Teran, A. Stomakhin, The affine particle-in-cell method, ACM Trans. Graph. 34 (2015) 1–10.
[61] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, A. Selle, The material point method for simulating continuum materials, in: ACM SIGGRAPH 2016 

Courses, 2016, pp. 1–52.
[62] Y. Jiang, M. Li, C. Jiang, F. Alonso-Marroquin, A hybrid material-point spheropolygon-element method for solid and granular material interaction, Int. 

J. Numer. Methods Eng. 121 (2020) 3021–3047.
[63] K. Kashima, Nonlinear model reduction by deep autoencoder of noise response data, in: 2016 IEEE 55th Conference on Decision and Control (CDC), 

2016, pp. 5750–5755.
[64] B. Kim, V.C. Azevedo, N. Thuerey, T. Kim, M. Gross, B. Solenthaler, Deep fluids: a generative network for parameterized fluid simulations, in: Computer 

Graphics Forum, Wiley Online Library, 2019, pp. 59–70.
[65] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, J. Teran, Drucker-Prager elastoplasticity for sand animation, ACM Trans. Graph. 35 (2016) 

1–12.
[66] S. Lall, J.E. Marsden, S. Glavaški, A subspace approach to balanced truncation for model reduction of nonlinear control systems, Int. J. Robust Nonlinear 

Control: IFAC-Affil. J. 12 (2002) 519–535.
[67] K. Lee, K. Carlberg, Deep conservation: a latent dynamics model for exact satisfaction of physical conservation laws, in: Proceedings of the AAAI 

Conference on Artificial Intelligence, 2021, pp. 277–285.
[68] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 

(2020) 108973.
[69] S. Li, W.K. Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev. 55 (2002) 1–34.
[70] X. Li, J. McWilliams, M. Li, C. Sung, C. Jiang, Soft hybrid aerial vehicle via bistable mechanism, arXiv preprint, arXiv:2011.00426, 2020.
[71] Y. Li, X. Li, M. Li, Y. Zhu, B. Zhu, C. Jiang, Lagrangian–Eulerian multidensity topology optimization with the material point method, Int. J. Numer. 

Methods Eng. 122 (2021) 3400–3424.
[72] Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential 

equations, in: International Conference on Learning Representations, 2021, https://openreview.net /forum ?id =c8P9NQVtmnO.
28

https://doi.org/10.1016/j.jcp.2012.10.011
https://www.sciencedirect.com/science/article/pii/S0021999112006006
https://www.sciencedirect.com/science/article/pii/S0021999112006006
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEB5D728CAC07A42DC5B70BD9645BE7D3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEB5D728CAC07A42DC5B70BD9645BE7D3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0F02355F77E5BF4A457A9913110E8F9Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0F02355F77E5BF4A457A9913110E8F9Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0C1330A65835E09FE5E8D7225C0CD50Cs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0C1330A65835E09FE5E8D7225C0CD50Cs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1071DFAAA621A5182BC1A6C701A50AF7s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1071DFAAA621A5182BC1A6C701A50AF7s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6907EBD9B9F8E16451F3C6E256AFE983s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6907EBD9B9F8E16451F3C6E256AFE983s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE42CEEBBCEFC0846B434615469EFE9D7s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE4E04ED653B7B090F9FE8D110A0A03ADs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE4E04ED653B7B090F9FE8D110A0A03ADs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD07466A412B9672664749828A395A760s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD07466A412B9672664749828A395A760s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib37CC42DBB9B23BA5B7DD50B79A8943EFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib37CC42DBB9B23BA5B7DD50B79A8943EFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE8CF2A0606117708EBA68B4FCAD5A3CFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE6B843ABA6B59DA825A614E8E3C6F988s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE6B843ABA6B59DA825A614E8E3C6F988s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib7C9FF83BDC975DF60B544232FEF5CC0Cs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0B9ED9C73AABB1E9EC71F8E9A2337D98s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE5931F9F88113CA5DF0F936ECDAA49F9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE5931F9F88113CA5DF0F936ECDAA49F9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibC17990FF8E50FD7FA1086A03A4593A42s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibC17990FF8E50FD7FA1086A03A4593A42s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5A3471926DCE279E37DB995E6F3B13A1s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5A3471926DCE279E37DB995E6F3B13A1s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEF037D335E12E9E81F5A17E545A5EE9As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEF037D335E12E9E81F5A17E545A5EE9As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib262D190F120414118EB6E808529A1856s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3952303428ECD0A1779F4F3A57926A9Bs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3952303428ECD0A1779F4F3A57926A9Bs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5976A72169FFB0B0F62DF100FD8157E2s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5976A72169FFB0B0F62DF100FD8157E2s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEAB1E61512A9194B4E46D0F05876C3F0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEAB1E61512A9194B4E46D0F05876C3F0s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9C9F5A78E0B494FF262C2C5EDD2BE66As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9C9F5A78E0B494FF262C2C5EDD2BE66As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB2112EBC32AE3CC4882DF1A26BB5C64Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB2112EBC32AE3CC4882DF1A26BB5C64Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA1915675BD26EB39471A618059BBDD22s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA1915675BD26EB39471A618059BBDD22s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF43749A914CED1B62FE95379715BA8C5s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF43749A914CED1B62FE95379715BA8C5s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0F26D3A98C76D43ADA7F70DAFD804445s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibAA41DA1D3C572ABEB6D86D4F8DDA4A1Bs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA039B99536EB724A28A992E8AC563DA4s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA039B99536EB724A28A992E8AC563DA4s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib2270C97E01B9FCFC0A8A646451912149s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib2270C97E01B9FCFC0A8A646451912149s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib450A4B25F0211E4446826050D041DCF8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib450A4B25F0211E4446826050D041DCF8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA85C5843E75E3B52F59CDA70C019CCE6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibA85C5843E75E3B52F59CDA70C019CCE6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB0F90EEB5C1E7D8DC2BFBF8551BEC928s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB0F90EEB5C1E7D8DC2BFBF8551BEC928s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0A95C239B761B8BB83304215246C6401s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0A95C239B761B8BB83304215246C6401s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1890D4606116A64688B60B0701A97660s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1890D4606116A64688B60B0701A97660s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5BF75C8A51C20680552760C21C78F7EFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5BF75C8A51C20680552760C21C78F7EFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8009547C8EB3BB52F201A367B590C75Cs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib4957AB820A91947C677CE3FD5566241Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib46324FD7C2BF8D7A43537D81AB8B5400s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib46324FD7C2BF8D7A43537D81AB8B5400s1
https://openreview.net/forum?id=c8P9NQVtmnO


P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
[73] T. Lieu, C. Farhat, M. Lesoinne, Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng. 195 
(2006) 5730–5742.

[74] L. Liu, J. Gu, K. Zaw Lin, T.S. Chua, C. Theobalt, Neural sparse voxel fields, Adv. Neural Inf. Process. Syst. 33 (2020) 15651–15663.
[75] B. Lusch, J.N. Kutz, S.L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun. 9 (2018) 4950.
[76] L. Mainini, K. Willcox, Surrogate modeling approach to support real-time structural assessment and decision making, AIAA J. 53 (2015) 1612–1626.
[77] J.N. Martel, D.B. Lindell, C.Z. Lin, E.R. Chan, M. Monteiro, G. Wetzstein, ACORN: adaptive coordinate networks for neural scene representation, arXiv 

preprint arXiv:2105 .02788, 2021.
[78] T. Martin, N. Umetani, B. Bickel, OmniAD: data-driven omni-directional aerodynamics, ACM Trans. Graph. 34 (2015) 1–12.
[79] C.M. Mast, P. Arduino, G.R. Miller, P. Mackenzie-Helnwein, Avalanche and landslide simulation using the material point method: flow dynamics and 

force interaction with structures, Comput. Geosci. 18 (2014) 817–830.
[80] R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional 

autoencoders, Phys. Fluids 33 (2021) 037106.
[81] R. Maulik, A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, D. Livescu, Time-series learning of latent-space dynamics for reduced-order model closure, 

Phys. D: Nonlinear Phenom. 405 (2020) 132368.
[82] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, A. Geiger, Occupancy networks: learning 3d reconstruction in function space, in: Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4460–4470.
[83] B. Mildenhall, P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, R. Ng, NeRF: representing scenes as neural radiance fields for view synthesis, in: 

European Conference on Computer Vision, Springer, 2020, pp. 405–421.
[84] B. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control 

26 (1981) 17–32, https://doi .org /10 .1109 /TAC .1981.1102568, https://www.scopus .com /inward /record .uri ?eid =2 -s2 .0 -0019533482 &doi =10 .1109 %2fTAC .
1981.1102568 &partnerID =40 &md5 =23f83f786523f08268214845f6cb25c8, cited by 3526.

[85] J. Morton, A. Jameson, M.J. Kochenderfer, F. Witherden, Deep dynamical modeling and control of unsteady fluid flows, in: Advances in Neural Infor-
mation Processing Systems, 2018, pp. 9258–9268.

[86] T. Müller, A. Evans, C. Schied, A. Keller, Instant neural graphics primitives with a multiresolution hash encoding, arXiv preprint arXiv:2201.05989, 
2022.

[87] J.A. Nairn, Material point method calculations with explicit cracks, Comput. Model. Eng. Sci. 4 (2003) 649–664.
[88] N.C. Nguyen, J. Peraire, An efficient reduced-order modeling approach for non-linear parametrized partial differential equations, Int. J. Numer. Methods 

Eng. 76 (2008) 27–55.
[89] J.L. Nicolini, D.Y. Na, F.L. Teixeira, Model order reduction of electromagnetic particle-in-cell kinetic plasma simulations via proper orthogonal decom-

position, IEEE Trans. Plasma Sci. 47 (2019) 5239–5250.
[90] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
[91] S.E. Otto, C.W. Rowley, Linearly recurrent autoencoder networks for learning dynamics, SIAM J. Appl. Dyn. Syst. 18 (2019) 558–593.
[92] S. Pan, S.L. Brunton, J.N. Kutz, Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data, J. Mach. Learn. Res. 

24 (41) (2023) 1–60, http://jmlr.org /papers /v24 /22 -0365 .html.
[93] E.J. Parish, K.T. Carlberg, Time-series machine-learning error models for approximate solutions to parameterized dynamical systems, Comput. Methods 

Appl. Mech. Eng. 365 (2020) 112990.
[94] J.J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, DeepSDF: learning continuous signed distance functions for shape representation, in: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.
[95] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., PyTorch: an imperative style, high-

performance deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019) 8026–8037.
[96] N. Patankar, D. Joseph, Lagrangian numerical simulation of particulate flows, Int. J. Multiph. Flow 27 (2001) 1685–1706.
[97] B. Peherstorfer, K. Willcox, Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput. 37 (2015) A2123–A2150.
[98] C. Prud’homme, D. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, G. Turinici, Reliable real-time solution of parametrized partial differential equa-

tions: reduced-basis output bound methods, J. Fluids Eng., Transact. ASME 124 (2002) 70–80, https://doi .org /10 .1115 /1.1448332, https://www.scopus .
com /inward /record .uri ?eid =2 -s2 .0 -0003321083 &doi =10 .1115 %2f1.1448332 &partnerID =40 &md5 =29f1d03ad99030052a1d54c28212f5a4, cited by 338.

[99] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[100] D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, P. Kavehpour, A material point method for viscoelastic fluids, foams and sponges, in: 
Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2015, pp. 157–163.

[101] M. Rathinam, L.R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal. 41 (2003) 1893–1925.
[102] F. Regazzoni, L. Dede, A. Quarteroni, Machine learning for fast and reliable solution of time-dependent differential equations, J. Comput. Phys. 397 

(2019) 108852.
[103] C. Romero, D. Casas, J. Pérez, M. Otaduy, Learning contact corrections for handle-based subspace dynamics, ACM Trans. Graph. 40 (2021) 1–12.
[104] C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurc. Chaos 15 (2005) 997–1013.
[105] G. Rozza, D. Huynh, A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differ-

ential equations, Arch. Comput. Methods Eng. 15 (2007) 1–47, cited by 27.
[106] D. Ryckelynck, A priori hyperreduction method: an adaptive approach, J. Comput. Phys. 202 (2005) 346–366.
[107] A. Sadeghirad, R.M. Brannon, J. Burghardt, A convected particle domain interpolation technique to extend applicability of the material point method 

for problems involving massive deformations, Int. J. Numer. Methods Biomed. Eng. 86 (2011) 1435–1456.
[108] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, P. Battaglia, Learning to simulate complex physics with graph networks, in: International 

Conference on Machine Learning, PMLR, 2020, pp. 8459–8468.
[109] A. Schulz, J. Xu, B. Zhu, C. Zheng, E. Grinspun, W. Matusik, Interactive design space exploration and optimization for CAD models, ACM Trans. Graph. 

36 (2017) 1–14.
[110] S. Shen, Y. Yin, T. Shao, H. Wang, C. Jiang, L. Lan, K. Zhou, High-order differentiable autoencoder for nonlinear model reduction, arXiv preprint 

arXiv:2102 .11026, 2021.
[111] S. Sirisup, G. Karniadakis, A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys. 194 (2004) 92–116, 

https://doi .org /10 .1016 /j .jcp .2003 .08 .021, https://www.sciencedirect .com /science /article /pii /S0021999103004625.
[112] L. Sirovich, Turbulence and the dynamics of coherent structures. III. Dynamics and scaling, Q. Appl. Math. 45 (1987) 583–590.
[113] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein, Implicit neural representations with periodic activation functions, Adv. Neural Inf. Process. 

Syst. 33 (2020).
[114] J. Stam, Stable fluids, in: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 121–128.
[115] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technometrics 29 (1987) 143–151.
[116] A. Stomakhin, R. Howes, C. Schroeder, J.M. Teran, Energetically consistent invertible elasticity, in: Proceedings of the 11th ACM SIGGRAPH/Eurographics 

Conference on Computer Animation, 2012, pp. 25–32.
29

http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6DE975BAFF9EE8743FBFE877E7AE93C8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6DE975BAFF9EE8743FBFE877E7AE93C8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB34E9E01264C41281FA36CD213004074s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8F140E423A81A99EA85EB409F2115A1Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibBAD849678D5E13C60684EA5F16ED6A9Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDF3B46922DDD55EC32BCAAA270EE1751s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDF3B46922DDD55EC32BCAAA270EE1751s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibED28DE61B35D98B19EB3496A905F72B8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibC0BB452F2D39193ECD4CCA961053E443s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibC0BB452F2D39193ECD4CCA961053E443s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6F92D7D94A513CAD979CA510A60457F6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6F92D7D94A513CAD979CA510A60457F6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8197C88A7C43ECE24C6B0D0BF86654F9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib8197C88A7C43ECE24C6B0D0BF86654F9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib299E0AE105E101A18DA76D1D6403182As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib299E0AE105E101A18DA76D1D6403182As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDBDCB6085F5DEAD9DE7073D82E574DBBs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDBDCB6085F5DEAD9DE7073D82E574DBBs1
https://doi.org/10.1109/TAC.1981.1102568
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019533482&doi=10.1109%2fTAC.1981.1102568&partnerID=40&md5=23f83f786523f08268214845f6cb25c8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019533482&doi=10.1109%2fTAC.1981.1102568&partnerID=40&md5=23f83f786523f08268214845f6cb25c8
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib77F9B8D66F32F1E3C711A61408A3724Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib77F9B8D66F32F1E3C711A61408A3724Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1A54825338391FD1F46EABF2BACC5139s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1A54825338391FD1F46EABF2BACC5139s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEB8AFA2DF2EF8A5B6B63EBFD6F4C9142s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6F730C1018030BCEF874404642E15FEEs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6F730C1018030BCEF874404642E15FEEs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE19E9716789516021CBCB765D6665D87s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibE19E9716789516021CBCB765D6665D87s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib4DA0EF93AE8FDBAF2EC9720200F337BDs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0D43D2B6432DC0D254D7839E3162DE3Ds1
http://jmlr.org/papers/v24/22-0365.html
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib36300D97568E2D2AB1FD3D7AB277867Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib36300D97568E2D2AB1FD3D7AB277867Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDA8B0D227B50B0E60FEB4B0DB5171BE9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDA8B0D227B50B0E60FEB4B0DB5171BE9s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibEA56FF767CB1C2C04EDA79ECDBDD48B6s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibB358A84EED3AF6E0E988AA0E51C14BE4s1
https://doi.org/10.1115/1.1448332
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0003321083&doi=10.1115%2f1.1448332&partnerID=40&md5=29f1d03ad99030052a1d54c28212f5a4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0003321083&doi=10.1115%2f1.1448332&partnerID=40&md5=29f1d03ad99030052a1d54c28212f5a4
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0B6AE20299C15654E1FE523077A9D59Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0B6AE20299C15654E1FE523077A9D59Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib296CD4E591262CAB96886B58BCEA8871s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibFB8302441E9ADF3FE16D181478D218DAs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibFB8302441E9ADF3FE16D181478D218DAs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib466DDFD5B494D3EA8AEFBADDD586403Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib6B6439598FA2A168BAB568944F810A88s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1037118B6E382BF5417842BFE895DCF8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib1037118B6E382BF5417842BFE895DCF8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF2775992549B917F2675CCA4DC2B3FDAs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib760C96FBEBA9A6F39ADDE629618FAB2Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib760C96FBEBA9A6F39ADDE629618FAB2Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib84C224B8A5C832C173B9D32629D9E4E3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib84C224B8A5C832C173B9D32629D9E4E3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib60CFDF4487D347F352ADCFD9FD7605F3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib60CFDF4487D347F352ADCFD9FD7605F3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib2C23C0603339ADBDC70EDD08755DDFF1s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib2C23C0603339ADBDC70EDD08755DDFF1s1
https://doi.org/10.1016/j.jcp.2003.08.021
https://www.sciencedirect.com/science/article/pii/S0021999103004625
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib98AE3E57E23F284F30E4C1E8C175BE1Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibCCA22B64EB3DFCB1DA584ADFC3DA462Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibCCA22B64EB3DFCB1DA584ADFC3DA462Es1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF0C5BE26E19A79780E1D2A076175C28Cs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib88B80CF5DD37991E83B172F80F1B4E0As1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3CDB0115A32C91EB04BB3FCBB5E8B2C8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib3CDB0115A32C91EB04BB3FCBB5E8B2C8s1


P.Y. Chen, M.M. Chiaramonte, E. Grinspun et al. Journal of Computational Physics 478 (2023) 111908
[117] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, A. Selle, A material point method for snow simulation, ACM Trans. Graph. 32 (2013) 1–10.
[118] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, A. Selle, Augmented MPM for phase-change and varied materials, ACM Trans. Graph. 33 (2014) 

1–11.
[119] H. Su, T. Xue, C. Han, C. Jiang, M. Aanjaneya, A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase 

change, ACM Trans. Graph. 40 (2021) 1–18.
[120] D. Sulsky, S.J. Zhou, H.L. Schreyer, Application of a particle-in-cell method to solid mechanics, Comput. Phys. Commun. 87 (1995) 236–252.
[121] N. Takeishi, Y. Kawahara, T. Yairi, Learning Koopman invariant subspaces for dynamic mode decomposition, in: Advances in Neural Information 

Processing Systems, 2017, pp. 1130–1140.
[122] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson, M. McGuire, S. Fidler, Neural geometric level of detail: real-time 

rendering with implicit 3d shapes, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11358–11367.
[123] Q. Tan, Z. Pan, L. Gao, D. Manocha, Realtime simulation of thin-shell deformable materials using CNN-based mesh embedding, IEEE Robot. Autom. 

Lett. 5 (2020) 2325–2332.
[124] N. Umetani, Y. Koyama, R. Schmidt, T. Igarashi, Pteromys: interactive design and optimization of free-formed free-flight model airplanes, ACM Trans. 

Graph. 33 (2014) 1–10.
[125] S. Wang, M. Ding, T.F. Gast, L. Zhu, S. Gagniere, C. Jiang, J.M. Teran, Simulation and visualization of ductile fracture with the material point method, 

Proc. ACM Comput. Graph. Interact. Tech. 2 (2019) 1–20.
[126] X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, D.M. Kaufman, C. Jiang, Hierarchical optimization time integration for CFL-rate MPM stepping, 

ACM Trans. Graph. 39 (2020) 1–16.
[127] X. Wang, Y. Qiu, S.R. Slattery, Y. Fang, M. Li, S.C. Zhu, Y. Zhu, M. Tang, D. Manocha, C. Jiang, A massively parallel and scalable multi-GPU material point 

method, ACM Trans. Graph. 39 (2020) 30:1–30:15.
[128] Z. Wang, I. Akhtar, J. Borggaard, T. Iliescu, Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. 

Methods Appl. Mech. Eng. 237 (2012) 10–26.
[129] Z. Więckowski, S.K. Youn, J.H. Yeon, A particle-in-cell solution to the silo discharging problem, Int. J. Numer. Methods Eng. 45 (1999) 1203–1225.
[130] S. Wiewel, M. Becher, N. Thuerey, Latent space physics: towards learning the temporal evolution of fluid flow, in: Computer Graphics Forum, Wiley 

Online Library, 2019, pp. 71–82.
[131] K. Willcox, J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA J. 40 (2002) 2323–2330.
[132] J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, C. Jiang, CD-MPM: continuum damage material point methods for dynamic fracture animation, ACM Trans. 

Graph. 38 (2019) 1–15.
[133] Y. Yang, D. Li, W. Xu, Y. Tian, C. Zheng, Expediting precomputation for reduced deformable simulation, ACM Trans. Graph. 34 (2015).
[134] A.R. York, D. Sulsky, H.L. Schreyer, Fluid–membrane interaction based on the material point method, Int. J. Numer. Methods Eng. 48 (2000) 901–924.
[135] Y. Yue, B. Smith, C. Batty, C. Zheng, E. Grinspun, Continuum foam: a material point method for shear-dependent flows, ACM Trans. Graph. 34 (2015) 

1–20.
[136] Y. Yue, B. Smith, P.Y. Chen, M. Chantharayukhonthorn, K. Kamrin, E. Grinspun, Hybrid grains: adaptive coupling of discrete and continuum simulations 

of granular media, ACM Trans. Graph. 37 (2018) 1–19.
30

http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF832CAAAF14F6CCFF8EFCEDBEDDCCE50s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib54B18AFC7742058F9AD3A31CE886765Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib54B18AFC7742058F9AD3A31CE886765Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib27BBCDAD82A8032A06B6F465180B8B40s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib27BBCDAD82A8032A06B6F465180B8B40s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibDD3943570FFFE842EE4098F8F7632106s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib687BB81978D860CBC4686F540284D787s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib687BB81978D860CBC4686F540284D787s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF01C1F04A83B7F5C07C3D9DE927E1945s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibF01C1F04A83B7F5C07C3D9DE927E1945s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib22CB0B37E0244E5BE2A6842E93EA15BEs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib22CB0B37E0244E5BE2A6842E93EA15BEs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib067604F790104CD0B789831A8799D910s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib067604F790104CD0B789831A8799D910s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib994887FB905F14ABEF1C2B76F86FD067s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib994887FB905F14ABEF1C2B76F86FD067s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib199AE79957A49CBAD422945527B7CE6Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib199AE79957A49CBAD422945527B7CE6Ds1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9536C3BA48DA69232A733EDF065431C2s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9536C3BA48DA69232A733EDF065431C2s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib16CC52932BD4EF275CD4CE1E395192B8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib16CC52932BD4EF275CD4CE1E395192B8s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib9CB900581579714C8B5268143C59CB1Fs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib478B2C3708E4A8AE449ECEC6D58724BCs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib478B2C3708E4A8AE449ECEC6D58724BCs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibD8451D6D64250CE7A46F74CDEFCBF6A3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibED6C90C6C9E67E78417439E27232F3A3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibED6C90C6C9E67E78417439E27232F3A3s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bibC38C0952F037A43BB45E67F056B3C887s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib0642E17613002A26F0E57A0D339A31D5s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib352F39A819E3C8988E3CD8765874301Bs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib352F39A819E3C8988E3CD8765874301Bs1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5D5AEAC38365B2E904249ED0ABAFBF39s1
http://refhub.elsevier.com/S0021-9991(23)00003-7/bib5D5AEAC38365B2E904249ED0ABAFBF39s1

	Model reduction for the material point method via an implicit neural representation of the deformation map
	1 Introduction
	1.1 Projection-based model reduction
	1.2 Material point method
	1.3 Overview of contribution

	2 Full-order model
	2.1 Continuous problem formulation
	2.1.1 Lagrangian strong form
	2.1.2 Eulerian strong form

	2.2 MPM discretization
	2.2.1 Lagrangian discretization
	2.2.2 Eulerian discretization


	3 Reduced-order model
	3.1 Kinematics: low-dimensional manifold
	3.2 Dynamics
	3.2.1 Hyper-reduction
	3.2.2 Calculate full-space kinematics at quadrature points
	3.2.2.1 Quadrature points via Lagrangian material points
	3.2.2.2 Quadrature points via Eulerian quadrature points

	3.2.3 Calculate the full-space dynamics
	3.2.4 Calculate the reduced-space dynamics


	4 Manifold-parameterization construction via implicit neural representation
	4.1 Encoder
	4.2 Loss function

	5 Numerical experiments
	5.1 Gravity
	5.1.1 The effect of gradient penalties
	5.1.2 The effect of the generalized coordinates dimension
	5.1.3 The effect of hyper-reduction
	5.1.4 Hyperparameter summary

	5.2 Torsion and tension
	5.2.1 Zero-shot super-resolution

	5.3 Poke-and-recover
	5.3.1 Reduced-space trajectory
	5.3.2 Continual manipulation

	5.4 Large-scale experiments
	5.4.1 Comparison


	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Projection linearization
	Appendix B Training details
	References


