
Neural Monte Carlo Fluid Simulation
Pranav Jain

pranavj@usc.edu

University of Southern California

USA

Ziyin Qu

ziyinq@seas.upenn.edu

University of Pennsylvania

USA

Peter Yichen Chen

pyc@csail.mit.edu

MIT CSAIL

USA

Oded Stein

ostein@usc.edu

University of Southern California

USA

our method
smoke ring

our method
smoke plume & obstacle

i=1 i=100 i=20 i=50

i=75 i=110

INSR [Chen et al. 2023]

ours

i=33i=14

Figure 1: Our method simulates fluids in the presence of obstacles with a combined neural network and Monte Carlo approach
to operator splitting for the Navier Stokes equations. With our method, we can simulate important qualitative vorticity-based
phenomena, such as vortex shedding in the von Kármán vortex street experiment, previous neural spatial representation
papers [Chen et al. 2023b] cannot (left).

ABSTRACT
The idea of using a neural network to represent continuous vec-

tor fields (i.e., neural fields) has become popular for solving PDEs

arising from physics simulations. Here, the classical spatial dis-

cretization (e.g., finite difference) of PDE solvers is replaced with a

neural network that models a differentiable function, so the spatial

gradients of the PDEs can be readily computed via autodifferen-

tiation. When used in fluid simulation, however, neural fields fail

to capture many important phenomena, such as the vortex shed-

ding experienced in the von Kármán vortex street experiment. We

present a novel neural network representation for fluid simula-

tion that augments neural fields with explicitly enforced boundary

conditions as well as a Monte Carlo pressure solver to get rid of

all weakly enforced boundary conditions. Our method, the Neural
Monte Carlo method (NMC), is completely mesh-free, i.e., it doesn’t

depend on any grid-based discretization. While NMC does not

achieve the state-of-the-art accuracy of the well-established grid-

based methods, it significantly outperforms previous mesh-free

neural fluid methods on fluid flows involving intricate boundaries

and turbulence regimes.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0525-0/24/07.

https://doi.org/10.1145/3641519.3657438

CCS CONCEPTS
• Computing methodologies → Computer graphics; Physical
simulation; Neural networks; •Mathematics of computing
→ Probabilistic algorithms.

KEYWORDS
fluid simulation, neural networks, Monte Carlo

ACM Reference Format:
Pranav Jain, Ziyin Qu, Peter Yichen Chen, and Oded Stein. 2024. Neural

Monte Carlo Fluid Simulation. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657438

1 INTRODUCTION
Simulating fluids boils down to solving the Navier-Stokes partial

differential equation (PDE). The difficulty of solving this PDE has

led to a wide variety of classical simulation methods that are based

on the discretization of the domain with the help of a grid or mesh,

where the domain is subdivided into discrete elements with associ-

ated degrees of freedom to model a reduced function space. This

function is then evolved forward in time.

Meshing the spatial domain to solve PDEs brings with it major

challenges, such as the difficulty of adaptivity, handling higher di-

mensions, and large memory consumption. Neural-network-based

physical simulation methods have the potential to overcome these

mesh-dependent drawbacks by compactly representing the spatial

functions underlying the simulation as neural networks that take a

https://orcid.org/0000-0002-8176-7558
https://orcid.org/0009-0004-0421-7917
https://orcid.org/0000-0003-1919-5437
https://orcid.org/0000-0001-9741-3175
https://doi.org/10.1145/3641519.3657438
https://doi.org/10.1145/3641519.3657438


SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

spatial coordinate as input and output the function value at each

point. These networks handle high dimensions by design, requiring

no intricate meshing. They are also adaptive by design, allowing for

optimizing neural network weights for arbitrary scales and resolu-

tions. Since these networks are also continuously differentiable, the

derivatives inherent in the PDEs can be readily computed by simply

differentiating the network. This approach has recently found suc-

cess in cloth simulations [Kairanda et al. 2023], solid simulations

[Zesch et al. 2023], and fluid simulations [Chen et al. 2023b]. We

refer to the recent course on deep learning and physics simulation

by [Du 2023] for more details.

These neural networks, however, can struggle with two things

in particular: First, since they often enforce boundary constraints

weakly, i.e., by adding a penalty term to the training loss that

encourages compliance to the boundary condition when minimized,

they can not guarantee that these boundary conditions are always

fulfilled after training – this is especially problematic in situations

with complicated boundaries. Second, neural network approaches

have difficulties resolving challenging situations characterized by

turbulent flows (see Figure 1).

Another way to deal with the drawbacks of classical spatial

discretization are Monte Carlo methods. A disadvantage of some

Monte Carlo methods is their inability to employ Neumann bound-

ary conditions which are common in many real-world scenarios

for both fluid velocity and pressure. Another disadvantage is the

non-differentiability of most Monte Carlo models – while neural

networks are smooth functions defined everywhere, computing the

gradient or Hessian of a Monte Carlo model is nontrivial.

In this paper, we aim to push the boundaries of how far we can

get without any grid discretization. We marry neural networks

and Monte Carlo methods to create the Neural Monte Carlo (NMC)

fluid simulation method that has the advantages of both and none

of the drawbacks (see Figure 1 for an overview of our results).

We model the velocity of our fluids using neural networks with

explicitly enforced Dirichlet boundary conditions, and the pressure
using a Monte Carlo method, combined with caching approaches

to speed up computation. While our Neural Monte Carlo method

does not achieve the state-of-art accuracy of the well-established

gird methods, it is:

• mesh-free (does not require any kind of grid discretization);

• guaranteeing Dirichlet and Neumann boundary conditions

are exactly fulfilled;

• modeling complex phenomena such as von Kármán limited-

cycle vortex shedding.

We combine the existing Implicit Neural Spatial Representation

(INSR) approach by Chen et al. [2023b] with the existing Monte-

Carlo method by Sawhney et al. [2023] while enforcing hard bound-

ary conditions. Our contribution lies in combining these existing

methods and adding explicit boundary conditions to create our

Neural Monte Carlo method that is able to handle obstacles and

simulate complex fluid phenomena.

2 RELATEDWORK
2.1 Classical fluid simulation
The seminal work by Stam [1999] lays the foundation for fluid

simulation in visual computing. Since then, fluid simulations have

long been leveraging the projection method originally developed

by Chorin [1968], where the highly nonlinear Navier-Stokes equa-

tion is integrated in time in an operator-splitting fashion. Visual

computing researchers [Bridson 2015] have made a lot of efforts

to improve its accuracy and efficiency [Bargteil et al. 2006; Batty

et al. 2007; Bender and Koschier 2016; Carlson et al. 2004; De Goes

et al. 2015; Fedkiw et al. 2001; Fei et al. 2017; Hyde and Fedkiw

2019; Jiang et al. 2015; Kim et al. 2008; Li et al. 2020; Nabizadeh

et al. 2022; Qu et al. 2019; Ren et al. 2014; Ruan et al. 2021; Selle

et al. 2008; Solenthaler and Pajarola 2009; Yuksel et al. 2007; Zehn-

der et al. 2018; Zhu et al. 2013]. Virtually all of these methods

leverage classical basis functions to discretize the spatial vector

field after temporal discretization. These basis functions include

finite difference [Godunov and Bohachevsky 1959], finite volume

[Moukalled et al. 2016], smoothed-particle hydrodynamics [Müller

et al. 2003], particle-in-cells [Zhu and Bridson 2005], and spectral

methods [De Witt et al. 2012]. These traditional discretizations,

however, face challenges in handling high-dimensional inputs, a

large number of memory consumptions, and difficulty of adaptivity

[Ando et al. 2013; Museth 2013; Setaluri et al. 2014].

2.2 Neural fluid simulation
An alternative basis function is the neural network. With the recent

trend in implicit neural representations (also known as neural fields,

coordinate-based neural representations) [Chen and Zhang 2019;

Mescheder et al. 2019; Park et al. 2019; Sitzmann et al. 2020] and

physics-informed neural networks [Raissi et al. 2019; Wang et al.

2021], visual computing researchers have explored various ways to

leverage neural networks to solve PDEs arising in geometry process-

ing [Chetan et al. 2023; Dodik et al. 2023; Yang et al. 2021], topology

optimization [Zehnder et al. 2021], cloth modeling [Kairanda et al.

2023; Santesteban et al. 2022], contact handling [Zesch et al. 2023],

soft bodies [Chang et al. 2023], and elastoplasticity [Chen et al.

2023a; Zong et al. 2023].

Unlike classical fluid simulations, neural fluid simulations excel

at adaptivity thanks to the grid-free nature of neural networks

but suffer significant drawbacks in speed and accuracy. Chen et al.

[2023b] use a neural network based on SIREN [Sitzmann et al.

2020] to represent the velocity and pressure in a classical operator-

splitting fluid simulation, forgoing the grid that is usual in non-

neural methods. Deng et al. [2023] leverages a hybrid neural-grid

formulation to model the spatiotemporal flow map and achieves

greater fidelity than the classic grid methods. Nevertheless, as dis-

cussed by Chuang and Barba [2022], capturing the signature von

Kármán vortex street without any training data and with only a

physics-informed loss remains challenging for neural fluid simu-

lation methods that are entirely grid-free and mesh-free. Similar

to our approach, the recent work of Wang et al. [2023] use neural

networks to successfully model the von Kármán vortex street. Their

approach utilizes non-dimensionalization of the PDEs, advanced

network architectures, and special training schemes. By contrast,



Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA

Figure 2: An overview over our domain and naming con-
ventions. Our domain 
 is bounded by � . The parts of the
boundary where the Dirichlet conditions are enforced are �3 .
Obstacles are just additional Dirichlet boundaries.

our method employs the operator splitting technique to handle

PDEs while relying on conventional network architectures and

off-the-shelf training schemes.

2.3 Monte Carlo methods
The Monte Carlo technique is an old method to compute integrals

and solve PDEs by randomly sampling the integration domain [Me-

tropolis and Ulam 1949]. Monte Carlo methods, traditionally used

for rendering in computer graphics, have recently become popular

in geometry processing and simulation as well to solve spatial PDEs

without meshes or grids [Li et al. 2023; Miller et al. 2023; Sawhney

and Crane 2020; Sawhney et al. 2022, 2023]. Methods like the one

by Sawhney et al. [2023] can solve elliptic PDEs by starting ran-

dom walks from an arbitrary evaluation point, and stopping the

walk when some criterion (such as a boundary encounter or an

absorption site) is reached.

Monte Carlo methods have also started seeing applications in

fluid simulation, where they circumvent classical methods’ need

for spatial grids or meshes, such as the work of Rioux-Lavoie et al.

[2022] (which cannot model zero Neumann boundary conditions

for the pressure field). In our work, we use the Monte Carlo method

of Sawhney et al. [2023] to model the pressure field of our fluid sim-

ulation – this enables us to impose Neumann boundary conditions.

3 PROBLEM STATEMENT
Consider a domain 
 ⊆ R3

(3 = 2•3) with boundary � = m
 . We

model our fluid using the Euler equation, the inviscid case of the

general Navier-Stokes equations (see, e.g., the work of Stam [1999]):

mu
mC

= −(u · ∇)u − ∇? + g • (1)

where

• u : 
 → R3
is the velocity of the fluid;

• ? : 
 → R is the pressure of the fluid;
• and g : 
 → R3

are external forces.

In addition, we have an incompressibility condition on our veloc-

ity,

∇ · u = 0” (2)

Our boundary � is divided into impassable (�3 ) and passable (� 0)

sections, � = �3 ∪ � 0. On impassable sections, we apply a Dirichlet

(no-through) boundary condition to the velocity,

u(G) · n� (G) = 0 ∀G∈ �3• n� boundary normal, (3)

spatial
coordinate

dense network

Lin ActLin Act Lin Act Lin Act Lin

…
… … …

Figure 3: Our velocity neural network takes in a spatial coor-
dinate in R3 , then runs it through a number of alternating
fixed-width linear layers and SIREN activation layers, then
multiplies the output with the cutoff function, and returns a
vector in R3 .

reflecting the fact that fluid can not enter or leave at all through �3 ,

and is not constrained in any way on � 0.
1
On the entire boundary

� , we apply Neumann boundary conditions to the pressure,

n� (G) · ∇?(G) = 0 ∀G∈ � • n� boundary normal. (4)

Moreover, at some points in the domain, we can artificially inject

velocity if the problem demands it. Figure 2 shows how our domain

and its boundaries are defined.

We specify initial conditions u0
, ?0

for the Euler equation (1),

and then evolve them in time using the PDE.

4 METHOD
The Euler equation (1) is notoriously difficult to discretize. In this

section, we explain our method, which combines neural networks

and Monte Carlo methods and applies them to the classic operator

splitting approach to fluid simulation. Unlike many machine learn-

ing fluids works [Kim et al. 2019], our method does not require
any training data, neither from other solves nor from experiments.

It works just like the classic grid-based solver. The only difference

between ours and a classic grid-based solver is that ours does not

require grid discretization of any kind.

4.1 Operator-splitting time integration: the
projection method

Assuming a timestep size of � C, we evolve our velocity and pressure
in an operator splitting fashion. Specifically, we leverage the pro-

jection method originally developed by Chorin [1968], as described

in the work of [Chen et al. 2023b; Stam 1999]. It consists of three

steps advection, pressure projection, and velocity correction.

Advection. We first advect the velocity forward in time with the

formula

u8+1
adv

(G) = u8(G− � Cu8(G)) • (5)

subject to Dirichlet boundary conditions (3).

We can formulate this as the optimization problem

u8+1
adv

= argmin
u

�
adv

(u•u8)•

�
adv

(u•u8) =



 u − u8

1




 2
2 • u8

1 (G) = u8(G− � Cu8(G)) •
(6)

where the norm is the ! 2
norm of functions over the domain 
 ,

∥5∥2
2 =

¯

 ∥5∥23G.

1
In some experiments, we also set all of the velocity, including the tangential part, to

zero at some parts of the boundary.



SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

0

Figure 4: The cutoff function d moves continuously from 0
to 1. We plot the output of the neural network ~u multiplied
with the cutoff function d. The resulting function u fulfills
Dirichlet boundary conditions.

Pressure projection. We then evolve the pressure by solving the

pressure projection Poisson equation,

� ?8+1(G) = ∇ · u8+1
adv

(G) • (7)

subject to pure Neumann boundary conditions (4).

Velocity correction. Finally, we ensure that our velocity fulfills

the incompressibility condition with the velocity correction step,

u8+1(G) = u8+1
adv

(G) − ∇?8+1(G) • (8)

subject to Dirichlet boundary conditions (3).

This can be done by solving the optimization problem

u8+1(G) = argmin
u

� corr (u•u8+1
adv

• ?8+1)•

� corr (u•u8+1
adv

• ?8+1) =





 u −

�
u8+1
adv

− ∇?8+1
� 





2

2
•

(9)

where the norm is an ! 2
norm of functions over the domain 
 .

Details on imposing Dirichlet boundary conditions for the ad-

vection and velocity correction step and imposing pure Neumann

boundary condition for the pressure projection step is discussed in

Section 4.4 and 4.3 respectively.

Remark: Note that this approach has only discretized the Euler

equation in the time domain. No spatial discretization has happened.
Indeed, this time discretization is compatible with any spatial rep-

resentation of the continuous velocity field and the pressure field.

Next, we introduce our spatial representation that is free from any

kind of grid discretization.

4.2 Velocity
Adapting the work of [Chen et al. 2023b], we represent the velocity

as a neural network that takes a spatial coordinate G∈ R3
as input

and returns a vector u(G) ∈ R3
.

Velocity network. The network consists of alternating linear lay-

ers and SIREN activation layers [Sitzmann et al. 2020], where all

linear layers have the same width. The time-discretized vector fields

are parametrized by the linear layer parameters \ ; we write u8
\ ∼ u8.

The width of the linear layers and the depth of the network can be

varied depending on user preference. Figure 3 shows a schematic

overview of the velocity network. In general, more and wider layers

are required to capture fine details. Figure 13 shows an example of

a shallow network unable to resolve a vortex ring, while the dense

network displays the correct behavior.

The implicit neural representation u8
\ ∼ u8 has a multitude of

advantages over traditional spatial representations such as grids or

meshes [Chen et al. 2023b].

• Every point in space can be exactly sampled, without relying

on interpolation.

• Thememory requirement of the neural network is not related

to the density of spatial samples, it only depends on thewidth

and depth of the network.

• The network is inherently differentiable, and exact gradients

can be computed at every point using autodifferentiation.

The gradients are not approximations that merely converge

to the true gradients.

Training. Training a neural network is analogous to minimizing

the energy functions defined in Section 4.1. The velocity neural

network must be trained twice in every time step: once for the

advection step u8+1
\•adv, and once for the velocity correction step u8+1

\ .

We use similar, but slightly different training schemes for each.

To train the advected velocity field u8+1
\•adv we use Adam for a

fixed number of iterations set as a parameter. At each training step,

we randomly sample : random pointsG1• ” ” ” • G: ∈ 
 , and use these

points to evaluate the integral in the advection loss �
adv

(6):

E
adv

(u) =
Õ

9




 u\ (G9) − u8

\ (G9− � Cu8
\ (G9))




 2

” (10)

This loss is used to backpropagate during the training. Note that

it is easy to sample u8
\ (G9) at any arbitrary point in the domain

since the neural network accepts any spatial coordinate as input.

The parameters we use in training are listed in the supplemental

material.

To train the corrected velocity field u8+1
\ , we use a similar strategy

employing Adam and a fixed number of iterations. We train on the

correction loss

Ecorr (u) =
Õ

9






 u(G9) −

�
u8+1

\•adv (G9) − ∇?8+1(G9)
� 





2

” (11)

Our sampling strategy is slightly different when training on

the loss (11). Both the neural network based u8+1
\•adv and the Monte

Carlo based ?8+1(G9) (Explained in Section 4.3) can be evaluated

at any arbitrary point in the domain. Re-evaluating ?8+1(G9) at
every training step, however, would hurt performance significantly

since it would require the Monte Carlo pressure solver to run for

every training step. To that end, to train the corrected velocity

network, we uniformly sample a large number of random points

G∗1• ” ” ” • G∗: ∗ ∈ 
 before we start the training procedure at each

timestep, and then randomly subsample a set of actual training

samples (G1• ” ” ” • G: ) ⊆
�
G∗1• ” ” ” • G∗: ∗

�
for each training timestep.

That way we can precompute our pressure samples, i.e compute

?8+1(G∗9) ∀G∗9 ∈ {G∗1• ” ” ” • G∗: ∗ } which significantly improves perfor-

mance while still ensuring effective random sampling during the

training of the corrected velocity field.

Weight reset. We reset the weights of the neural network at the

beginning of each timestep and do not reuse the previous timestep

as initialization, as we find that that significantly increases the

noisiness of u. We suspect this to be due to overfitting during

training. Figure 5 shows a comparison.



Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA

0

Figure 5: Vorticity plot for the von Kármán vortex street ex-
periment (Section 5.2) with (left) andwithout (right) resetting
weights at every timestep. We find that resetting weights sig-
nificantly reduces noise.

4.3 Pressure
Solving the Poisson equation for the pressure projection is often a

computation bottleneck in traditional grid methods [McAdams et al.

2010]. In fact, it is also a challenge in neural methodswhere the large

errors in the Poisson solve propagate to the rest of the simulation

[Chen et al. 2023b] (see Figure 7). To address this issue, we decide

to use Monte Carlo methods to solve the pressure projection step

to arbitrary precision. Like neural networks, Monte Carlo methods

also do not require grid or mesh discretization of any kind.

Walk on Stars. TheWalk on Stars (WoSt) Monte Carlo method

[Miller et al. 2023; Sawhney et al. 2023] solves the Poisson Equation

with Neumann boundary conditions,

−� ? = 5 • (12)

using a random walk approach. Given the right-hand side 5, WoSt

computes the solution ?(G) to (12) by sending random walkers from
Gon a randomwalk until they hit the domain boundary, where they

are either absorbed or reflected back into the domain. The Green’s

function of the Poisson equation and the Poisson kernel are then

used to accumulate the data gathered during the random walk and

compute a solution to the Poisson equation. Using this tactic, and a

variety of performance enhancements, we can solve the pressure
projection step(7) (which consists only of a Poisson equation) – see

the articles [Miller et al. 2023; Sawhney et al. 2023] for more details.

The Walk on Stars approach assures that we can evaluate the

pressure field ?8
at every point in the domain, and the Neumann

boundary conditions are guaranteed to be fulfilled by construction.

WoSt’s main advantage – faithful PDE solution on domains with

intricate boundaries – transfers to our method and enables us to

faithfully model even complicated obstacles.

Screened Poisson equation. WoSt can not actually directly solve

the Poisson equation (12) with pure Neumann boundary exactly, as

is the case with our pressure ?8
, since random walkers are reflected

at Neumann boundaries, which would result in infinite reflection.

For such boundaries, WoSt employs a regularization technique that

boils down to solving the screened Poisson equation

−� ? − f? = 5 • (13)

for a screening scalar f ¡ 0, resulting in an approximate solution

of (12) depending on the screening parameter. We find that this

regularization still results in believable fluid simulation. An explo-

ration of the effect of different screening weights can be found in

Figure 6.

Figure 6: The pressure in the von Kármán vortex street exper-
iment for multiple screening weights. Increasing the screen-
ing weight reduces the noise produced by the WoSt method,
while not changing the qualitative behavior of the simula-
tion much. We thus tend to use larger screening weights.

Gradients. We do not actually need the pressure, ?8
for the next

step (the velocity correction step (11)). We only need the gradient
∇?8+1

. The WoSt method can return the exact gradient of the so-

lution as well using the random walker strategy – no numerical

approximations of the gradient are needed. This is done by using

the gradients of the Green’s function and the Poisson kernel inside

WoSt returning the gradients of the solution.

Encoding the right-hand side. In our implementation, we pass

the right-hand side of the pressure projection step (7), ∇ · u8+1
adv

(G),
to WoSt [Sawhney et al. 2023] (using the official implementation

[Sawhney and Miller 2023]), by evaluating it on a spatial grid.

This grid is only needed because of the interface of Sawhney et al.

[2023]’s WoSt implementation [Sawhney and Miller 2023] – it is

not a theoretical limitation of our method and can be chosen inde-

pendently of the NNs sizes.

4.4 Boundary conditions
While our pressure ?8

fulfills Neumann boundary conditions by

construction, our velocity (so far a neural network that can return

any value in R3
), does not fulfill any boundary conditions yet. We

make sure that the boundary conditions for the velocity are fulfilled

by multiplying the output of the neural network, ~u, by a special

cutoff function d : R → [0•1]:
~un (G) = (n(1� (G)) · ~u(G)) n(1� (G))
~ut (G) = ~u − ~un

u(G) = ~ut (G) + d(B3 (G)) ~un (G) •
(14)

where B3 : R3 → R is the distance function of the Dirichlet bound-

ary segments �3 , and 1� (G) is the closest point on � to G. We then

input the multiplied velocity u into the losses (10), (11) during

training.

If the cutoff function fulfills d(0) = 0• d(Y) = 1• d(C¡ Y) = 1,
then (14) guarantees that

• n� (G) ·u(G) = 0∀G∈ �3 , i.e., u fulfills the Dirichlet boundary

conditions;

• u(G) = ~u(G) ∀Gfarther than Yfrom �3 .

There is a variety of functions that fulfill these conditions. We pick

the simplest choice,

d(C) =

(
C
Y CŸ Y

1 C≥ Y
” (15)



SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

Figure 7: The von Kármán vortex street experiment simulated with stable fluids [Stam 1999], INSR [Chen et al. 2023b], and
with our method. While INSR degenerates into noise very quickly, our gridless method shows vortex shedding behavior which
qualitatively matches grid-based stable fluids.

This function can be differentiated once, which is enough to au-

todifferentiate u for the purposes of computing E
adv

and Ecorr. For
higher-order losses, one has to make sure that the function is dif-

ferentiable enough, which requires higher-order polynomials.

This cutoff strategy guarantees that our velocity always fulfills

the Dirichlet boundary condition, while not modifying the output

of the neural network ~u too far away from the boundary. While we

have a parameter (n), this parameter does not influence whether

the boundary conditions are fulfilled – it influences the approxima-

tion quality of the neural network. This is different from the INSR

method [Chen et al. 2023b], which uses weak boundary conditions

enforced via penalty. Figure 4 shows how our cutoff functions work

to ensure that u8
always fulfills the Dirichlet boundary conditions.

Similar strategies are employed by Berg and Nyström [2018]; Liu

et al. [2022], and there are other promising approaches for enforcing

explicit boundary conditions in neural networks [Chen et al. 2024;

Sukumar and Srivastava 2022; Zhong et al. 2023].

4.5 Algorithm
A pseudocode implementation of our method can be found in Al-

gorithm 1. It follows the operator splitting approach of Section 4.1

with our neural network velocity and Monte Carlo pressure.

We implement the neural network and its training in Pytorch

for the velocity and adapt the official C++implementation of WoSt

for the pressure. The experiments were run on an Intel i7 5.2GHz

with a NVIDIA RTX 4080 GPU.

Algorithm 1 Method overview

1: function NMC(u0
, ?0

)

2: for i = 0, ..., n do
3: Train u8+1

\•adv by minimizing E
adv

(10)

4: • randomly sample G9 in 


5: Pick random points

�
G∗9

�

9
in 


6: evaluate ?8+1(G∗9) ∀9using Monte Carlo.

7: Train u8+1
\ by minimizing Ecorr (11)

8: • randomly sub-sample G9 from
�
G∗9

�

9

9: return u=
\ • ?=

5 EXPERIMENTS AND RESULTS
In this section, we present the results of our method applied to a

variety of fluid simulation problems. Details on the initial conditions,

boundary conditions, and parameters used can be found in the

supplemental material.

5.1 Taylor-Green
We use our method to simulate the classical Taylor-Green flow

going back to the work of Taylor and Green [1936]. This experiment

is of particular interest because an analytical solution is known –

the result should remain stationary. We set up the initial condition

to be

u0(G•~) = (sin(G) cos(~)•− cos(G) sin(~)) ” (16)












	Abstract
	1 Introduction
	2 Related work
	2.1 Classical fluid simulation
	2.2 Neural fluid simulation
	2.3 Monte Carlo methods

	3 Problem statement
	4 Method
	4.1 Operator-splitting time integration: the projection method
	4.2 Velocity
	4.3 Pressure
	4.4 Boundary conditions
	4.5 Algorithm

	5 Experiments and Results
	5.1 Taylor-Green
	5.2 Von Kármán vortex street
	5.3 Smoke
	5.4 Quantitative comparison to previous work
	5.5 Convergence
	5.6 Timings

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

