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Figure 1: Starting with training simulations (left), we train a linear subspace of neural displacement fields (center). Each
such field W𝑗 maps material position 𝑿 to displacement W𝑗 (𝑿 ). Because the map is continuous, it effectively forgets the
discretizations used in the training simulations. Consequently, the resulting linear subspace

∑
𝑗 W𝑗 (𝑿 )q𝑗 is ideally suited for

fast simulations of scenarios that benefit from adaptive discretization, such as progressive cutting and topology changes (right).

ABSTRACT
Linear reduced-order modeling (ROM) simplifies complex simula-
tions by approximating the behavior of a system using a simplified
kinematic representation. Typically, ROM is trained on input sim-
ulations created with a specific spatial discretization, and then
serves to accelerate simulations with the same discretization. This
discretization-dependence is restrictive.

Becoming independent of a specific discretization would provide
flexibility tomix andmatchmesh resolutions, connectivity, and type
(tetrahedral, hexahedral) in training data; to accelerate simulations
with novel discretizations unseen during training; and to accelerate
adaptive simulations that temporally or parametrically change the
discretization.
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We present a flexible, discretization-independent approach to
reduced-order modeling. Like traditional ROM, we represent the
configuration as a linear combination of displacement fields. Un-
like traditional ROM, our displacement fields are continuous maps
from every point on the reference domain to a corresponding dis-
placement vector; these maps are represented as implicit neural
fields.

With linear continuous ROM (LiCROM), our training set can in-
clude multiple geometries undergoing multiple loading conditions,
independent of their discretization. This opens the door to novel
applications of reduced order modeling. We can now accelerate
simulations that modify the geometry at runtime, for instance via
cutting, hole punching, and even swapping the entire mesh. We
can also accelerate simulations of geometries unseen during train-
ing. We demonstrate one-shot generalization, training on a single
geometry and subsequently simulating various unseen geometries.

CCS CONCEPTS
• Computing methodologies→ Physical simulation.

KEYWORDS
Physical simulation, Reduced-order modeling, Implicit neural rep-
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1 INTRODUCTION
Reduced-order modeling (ROM) using linear subspaces to approx-
imate the solution space can accelerate deformable object simu-
lations by orders of magnitude. The idea is to generate a num-
ber of simulated trajectory exemplars, and then identify a low-
dimensional basis that approximates the exemplar displacements.
We then compute dynamics by evolving only the small number of
coefficients of this basis, known as reduced coordinates or latent
variables.

Classical approaches to ROM assume that the input exemplars
and output dynamics are all represented by a given spatial dis-
cretization, say a mesh of the domain Ω ⊂ R3. This reliance on a
specific discretization can be restrictive.

Being untethered from a specific discretization is desirable when
input exemplars are produced using different meshes (e.g., different
connectivity or resolution); simulation outputs are desired for vari-
ous meshes; we wish to produce simulation output that temporally
or parametrically adapts the mesh to suit the deformation (e.g.,
dynamic remeshing, arbitrary Lagrangian–Eulerian simulation).

Indeed, variations need not be limited to mesh connectivity and
resolution: perhaps we want to vary the mesh type (e.g., quad versus
tetrahedral meshes) or even the discretization type (e.g., mesh, point
sets with generalized moving least squares, radial basis functions,
spectral discretizations).

We present such a discretization-agnostic approach to reduced
order modeling. Our approach retains the linearity of the subspace
of common ROM approaches, but substitutes the discrete represen-
tation of each displacement basis field with its continuous analogue.

To make things concrete, consider a simple classical ROM ap-
proach tied to a mesh with 𝑛 vertices. We denote the time-varying
displacement of the mesh from its reference configuration by 𝒖 (𝑡)
with 𝒖 : T → R3𝑛 , where T (⊆ R) denotes the temporal domain.
We will place a bar (e.g., 𝒖 (𝑡)) over those quantities that depend on
spatial discretization, i.e., those with an index ranging over 1 . . . 𝑛.

In classical ROM, we approximate the time-varying displacement
of the mesh as a linear combination 𝒖 (𝑡) ≈ Uq(𝑡) of some 𝑟 ≪ 𝑛

dimensional, time-independent basis U, where q(𝑡) : T → Q is
the reduced or latent trajectory in the latent subspace Q ⊂ R𝑟 , and
U ∈ M3𝑛×𝑟 (R) is typically found via Proper Orthogonal Decom-
position1 (POD) over a training set of simulation data (temporal
sequences of displacement fields); M𝑚×𝑛 (𝐴) denotes the set of
𝑚 × 𝑛 matrices over the field 𝐴. Each column U𝑘 is a particular dis-
crete displacement field over the 𝑛 vertices; the mutually orthogonal
columns {U1 . . .U𝑟 } form the basis for the discrete displacement
subspace. We will use the sans serif typeface (U, q) to denote quan-
tities that depend on the subspace dimension 𝑟 .

1POD is also known as the Karhunen–Loève transform and is closely related to Princi-
pal Component Analysis (PCA).

𝑿 • •𝒙

𝑿 + 𝒖 (𝑿 , 𝑡)

𝒖 (𝑿 , 𝑡)

Ω𝑡Ω

Figure 2: Deformation of an elastic body. The reference do-
main Ω and the deformed domain Ω𝑡 at time 𝑡 are related
by the deformation mapping 𝑿 ↦→ 𝒙 (𝑿 , 𝑡) = 𝑿 + 𝒖 (𝑿 , 𝑡): each
deformed point 𝒙 (𝑿 , 𝑡) is displaced by 𝒖 (𝑿 , 𝑡) relative to the
reference point 𝑿 .

Now here is the crux of the matter: the discrete “architecture” of
U is immutably anchored to the initial discretization. The 𝑗th row
of U is the basis for the 𝑗th degree of freedom, where 1 ≤ 𝑗 ≤ 𝑛.
Indeed, for a mesh discretization, the temporal evolution of the
three degrees of freedom associated with 𝑖th vertex is given by

𝒖𝑖 (𝑡) = W𝑖q(𝑡) , (1)

whereW𝑖 ∈ M1×𝑟 (R3) is a 1×𝑟 matrix (a row vector) of R3-valued
coefficients, i.e., one displacement vector per each of the 𝑟 subspace
modes. The 3 × 𝑟 coefficients ofW𝑖 are drawn from those 3 rows
of U corresponding to vertex 𝑖 . (We will use boldface to denote
R3-valued entries.)

Stacking the row vectorsW𝑖 of all vertices givesW ∈ M𝑛×𝑟 (R3),
an 𝑛 × 𝑟 matrix with R3-valued entries, mapping 𝒖 (𝑡) = Wq(𝑡).
Essentially, W encodes the time-invariant linear mapping from the
latent configuration q(𝑡) to the full space displacements 𝒖 (𝑡).

We are nearly ready for our novel step, the transition to the
smooth setting. We view W = 𝑖 ↦→ W𝑖 : {1, . . . , 𝑛} → M1×𝑟 (R3)
as a map from the vertex index to the row vector of subspace
weights. This is a discrete map, and that is what we will now make
smooth.

In lieu of the discrete mapW, we propose to instead use a con-
tinuous map W = 𝑿 ↦→ W(𝑿 ) : Ω → M1×𝑟 (R3) taking a point
𝑿 ∈ Ω in the reference domain to its subspace weights, so that

𝒖 (𝑿 , 𝑡) = W(𝑿 )q(𝑡) . (2)

Comparing to (1), the discretization-dependent discrete index 𝑖 is
replaced by a discretization-independent continuous reference point
𝑿 (see Fig. 2). The time-varying spatially-varying displacement field
𝒖 (𝑿 , 𝑡) is a linear combination of spatially-varying, time-invariant
basis of displacement fields, whose time-varying, spatially-invariant
weights are given by q(𝑡).

To aid in intuition, we can also compare the columns of U, W,
andW. In all cases, the𝑘th column is a representation of a particular
displacement—a basis element of the approximating subspace—as
a field over the entire domain Ω; the distinction is that W𝑘 is a
continuous field, whereas the others are discrete column vectors.

Equation 2 is the basis for linear continuous ROM (LiCROM).
Now the training set can span multiple discretizations of the same
geometry, or evenmultiple geometries. This facilitates and broadens
the applicability of reduced order modeling: As we will show, with
LiCROM we can compute latent dynamics on geometries unseen
during training; simulations that modify the geometry at runtime
via cutting, hole punching, or swapping the entire mesh (Fig. 3),
without re-initializing the reduced coordinates.

https://doi.org/10.1145/3610548.3618158
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Figure 3: Interactive manipulation and one-shot generaliza-
tion. Training a neural basis on deformations of the Ar-
madillo, our application allows the user to interactively tug
at the geometry. Unlike discretization-dependent reduction
techniques, we can easily substitute the geometry. We com-
pute the latent dynamics on three meshes not seen during
training. While the kinematics are defined by the training
set, the physical response is defined by the geometry of the
current mesh, as evident in details, such as the wobbling of
the stick arms. Frame rate: 30 frames per second. Full space
time step cost: 335ms; reduced: 6ms. Hardware: Intel Core
i7-10750H.

2 RELATEDWORK
Linear reduced-ordermodeling. Model-reduction techniques [Ben-

ner et al. 2015] have proven to be a powerful tool for enabling
high-fidelity models to be run in real-time. They have been success-
fully applied to problems in many fields, such as fluid dynamics
[Bergmann et al. 2005; Carlberg et al. 2017, 2013; Hall et al. 2000;
Kim et al. 2019; Kim and Delaney 2013; Lieu et al. 2006; Mainini and
Willcox 2015; Treuille et al. 2006; Wiewel et al. 2019; Willcox and
Peraire 2002], solid mechanics [An et al. 2008a; Barbič and Zhao
2011; Barbič and James 2005; James et al. 2006; Kim and James 2009;
Xu et al. 2015; Yang et al. 2015], secondary motion for rigged ani-
mation [Benchekroun et al. 2023; Xu and Barbič 2016] and robotics
[Katzschmann et al. 2019; Tan et al. 2020].

Typically, the reduced space is learned from training exemplars
[Barbič and James 2005; Berkooz et al. 1993; Fulton et al. 2019], or
identified in a “data-free” manner from energetic first principles
[Pentland and Williams 1989; Shabana 2012; Sharp et al. 2023; Yang
et al. 2015]. “Online” approaches update the basis at runtime based
on the observed trajectory [Kim and James 2009; Mukherjee et al.
2016; Ryckelynck 2005]; a related approach is to interpolate between
precomputed bases [Xu and Barbič 2016]. We learn a fixed basis
from simulated exemplars.

Most model-reduction methods employ a linear-subspace ap-
proximation for the kinematics. Such approximations are accurate
for problems displaying a rapidly-decaying Kolmogorov 𝑛-width
[Pinkus 2012]. However, nearly all of these operate with a discrete
representation; those that do operate with the continuous repre-
sentation (e.g., reduced-basis methods) are intrinsically tied to an
underlying spatial discretization scheme. There have been a few
methods that applied nonlinear kinematic approximations, which
we will discuss below. Crucially, most of these also operate on a
discrete representation, with the exception of CROM [Chen et al.
2023a,b], which has been applied to the material point method and
to various partial differential equations.

We fill the gap in the literature by developing the first linear
kinematic approximation that is also independent of any spatial
discretization.

Deep-learning-based reduced-order modeling. Lee and Carlberg
[2018] introduced the first framework utilizing autoencoders to
capture nonlinear manifolds. Fulton et al. [2019] extended this
idea, combining it with POD for deformable solid dynamics. In a
complementary approach, Shen et al. [2021] used nonlinear autoen-
coders to efficiently execute Hessian-based latent space dynamics
by accurately computing high-order neural network derivatives.
Furthermore, Romero et al. [2021] introduced contact-induced de-
formation correction with linear subspace modes. Meanwhile, Luo
et al. [2020] focused on displacement correction, aiming to trans-
form linear elastic responses into more complex constitutive ones.

Discretization-independent representations. Recently, implicit neu-
ral representations have become an exciting area of exploration in
many fields, including shape modeling [Chen and Zhang 2019; Park
et al. 2019], 3D reconstruction [Mescheder et al. 2019; Mildenhall
et al. 2021], image representation and generation [Chen et al. 2021;
Shaham et al. 2021; Skorokhodov et al. 2021], and PDE-constrained
problems [Chen et al. 2022; Raissi et al. 2019; Yang et al. 2021;
Zehnder et al. 2021].

Aigerman et al. [2022] proposed a framework to accurately pre-
dict piecewise linear mappings of arbitrary meshes using a neural
network. It works with heterogeneous collections of meshes with-
out requiring a shared triangulation. Others aim to learn the latent
space representation of continuous vectors: Chen et al. [2023a] pro-
posed a model reduction method for material point method, while
Chen et al. [2023b] and Pan et al. [2023] learned a discretization-
agnostic latent space for PDEs. To the best of our knowledge,
the prototypical factored structure of linear ROM,W(𝑿 )q(𝑡), has
not been considered in the context of continuous discretization-
independent representations for model reduction.

3 DISCRETIZATION-BLIND SUBSPACE
LEARNING

We train LiCROM over an observed trajectory of a deformable
object. To simplify notation, assume one trajectory sampled at
instances {𝑡1, . . . , 𝑡𝑚}, although the approach trivially generalizes
to sampling multiple trajectories or multiple objects with parallel
trajectories.

Let X = {(�̃�1, �̃�1), . . . , (�̃�𝑚, �̃�𝑚)} be the training set, where
(�̃� 𝑗 , �̃� 𝑗 ) collects observations of the displacement field at time 𝑡 𝑗 .
In particular, �̃� 𝑗 = { 𝒖 𝑗1, 𝒖

𝑗

2, . . .} ⊂ R
3 consists of a finite number of

observations 𝒖 𝑗
𝑖
≡ 𝒖 (𝑿 𝑗

𝑖
, 𝑡 𝑗 ) of the displacement field at reference

positions �̃� 𝑗 ≡ {𝑿 𝑗

1 , 𝑿
𝑗

2 , . . .}. We do not assume a consistent
structure between point clouds, i.e., the sample positions 𝑿 𝑗

𝑖
and

𝑿 𝑗+1
𝑖

need not be equal, nor the sample counts |�̃� 𝑗 | and |�̃� 𝑗+1 |.
We seek a low-dimensional subspace that spans all the observed

fields (�̃� 𝑗 , �̃� 𝑗 ). In particular, we seek a projection P : (�̃� 𝑗 , �̃� 𝑗 ) ↦→
q𝑗 ∈ Q, and a corresponding basis W (independent of 𝑗 ) such that

W(𝑿𝑖 )P(�̃� 𝑗 , �̃� 𝑗 ) ≈ 𝒖 𝑗
𝑖
, ∀ (�̃� 𝑗 , �̃� 𝑗 ) ∈ X , ∀𝑿𝑖 ∈ �̃� 𝑗 . (3)

We adopt a parametric form for P andW, in particular a PointNet
encoder [Qi et al. 2017] and neural implicit field [Mescheder et al.
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Figure 4: Network architecture. To learn the subspace, the
PointNet encoder P(𝑿 , 𝒖) and the 5-layer multilayer per-
ceptron W(𝑿 ) are optimized over the training set X. This
yields a compact, factored kinematic space where the dis-
placement field 𝒖 (𝑿 , 𝑡) is a q(𝑡)-weighted linear combination
of 𝑟 precomputed time-invariant continuous displacement
fields {W1 (𝑿 ) . . .W𝑟 (𝑿 )}. During subspace simulation, the
PointNet encoder is no longer required: it has served its pur-
pose, finding an embedding for q(𝑡). The evaluation ofW(𝑿 )
at cubature points {𝑿𝑖 } is performed once when the cubature
scheme is established, and cached for reuse. Subsequently,
the subspace simulation inner loop requires only the usual
matrix-vector product W(𝑿𝑖 )q that is the cornerstone of lin-
ear subspace methods.

2019; Park et al. 2019], respectively, and optimize the parameters to
minimize the squared norm residual of (3), as depicted in Fig. 4.

3.1 Training Method
In our experiments, we produced the training set using simulations
based on tetrahedral mesh discretizations. However, observe that
the network does not directly “know” that the input was generated
by a mesh, only that a sampled displacement field was generated
somehow. The network aims to find a reduced basis that can recon-
struct all observed displacement fields, without consideration for
loading, boundary conditions, geometry, or discretization.

To produce our training set, we first generate a volumetric tetra-
hedal mesh for each geometry using TetWild [Hu et al. 2018], and
then execute the desired full-space simulation using a CPU-based
taichi [Hu et al. 2019] implementation that closely follows the de-
fault implicit FEM integrator inwarp [Macklin 2022]. We repeat this
process to produce a set of simulation results. Our implementation
uses the same cardinality �̃� = | (�̃� 𝑗 , �̃� 𝑗 ) | for the randomly sampled
vertex-based displacements of each animation frame, which sim-
plifies batch processing in PyTorch. We found that training the
PointNet encoder P can be expensive when (�̃� > 5000), yet using
a large cardinality is helpful for coverage of the domain. There-
fore, we further subsample ≈

𝑛 < �̃� vertices for the PointNet encoder.
We determine the parameters for P and W by minimizing the 𝐿2

reconstruction loss

L =

𝑚∑︁
𝑗=1

�̃�∑︁
𝑖=1

W(𝑿𝑖 )P ◦ S≈
𝑛
(�̃� 𝑗 , �̃� 𝑗 ) − 𝒖 𝑗

𝑖


2
, (4)

where S≈
𝑛
is the subsampling operator. We used ≈

𝑛 = 2500 for all
examples.

PointNet architecture. The PointNet encoder P is invariant under
permutation of input points, a desirable feature for our unordered
sets. A standard PointNet is also invariant under input transforma-
tions due to its input stage feature-transform net; we removed this
stage since latent space variables are not invariant under transfor-
mations of displacements. The input to the PointNet is an unordered
set of points (𝑿𝑖 , 𝒖𝑖 ) ∈ R3 × R3 ≡ R6 and the output is q.

Neural field architecture. The architecture for the neural field W
is a 5-layer multilayer perceptron (MLP) of width 60 with ELU [Clev-
ert et al. 2016] activation functions. We used this architecture for
all presented examples, however, we found that alternatives such
as SIREN [Sitzmann et al. 2020] can also generate good results.

Learning network parameters. We use PyTorch Lightning to im-
plement the entire training pipeline [Falcon and The PyTorch Light-
ning team 2019]. We adopted the Adam optimizer [Kingma and Ba
2017] and apply Xavier initialization. We train the model for 3750
epochs with a base learning rate of lr = 10−3. After the first 1250
epochs, we divide the learning rate by 5, then we further divide it
by 10 after another 1250 epochs. We used a batch size 16 for the
network’s input, so the batch size is 16 · �̃� for𝑊 .

4 DYNAMICS VIA IMPLICIT INTEGRATION
We formulate an implicit timestep in the framework of optimiza-
tion time integrators [Martin et al. 2011; Pan et al. 2015; Stuart
and Humphries 1996], which were recently used for latent space
dynamics by Fulton et al. [2019]. The configuration q at the end of
the ( 𝑗 + 1)th time step minimizes

𝐸 (q) =
∫
𝑿 ∈Ω

1
2ℎ2

W(𝑿 )q − 𝒖pred

𝑔
+ Ψ(𝑿 +W(𝑿 )q) dVol ,

(5)

where ℎ is the duration of the time step, 𝑔 is the kinetic energy2
norm, and Ψ(𝒙) is the elastic energy density, in our implementation
stable neohookean [Smith et al. 2018]. The explicit predictor for
the ( 𝑗 + 1)th time step

𝒖 𝑗+1pred = 𝒖 𝑗 + ℎ𝒗𝑛 + ℎ2𝑀−1𝒇ext (6)

requires the full-space velocity given by the finite difference

𝒗𝑛 =
𝒖𝑛 − 𝒖𝑛−1

ℎ
= W(𝑿 ) q

𝑛 − q𝑛−1

ℎ
= W(𝑿 ) ¤q𝑛 , (7)

where (by linearity of the subspace) ¤q𝑛 = (q𝑛 − q𝑛−1)/ℎ.
We approximate the domain integral (5) via cubature

𝐸 (q) ≈
∑︁
𝑖

𝑤𝑖

2ℎ2
∥W(𝑿𝑖 )q − 𝒖pred∥𝑔 +𝑤𝑖Ψ(𝑿𝑖 +W(𝑿𝑖 )q) , (8)

2The kinetic energy norm ∥𝒗 (𝑿 ) ∥𝑔 =
∫
Ω

1
2 𝜌 (𝑿 )𝒗 (𝑿 )2dVol, where 𝜌 (𝑿 ) is the

mass density.
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where𝑤𝑖 is the weighting of the 𝑖th cubature point 𝑿𝑖 . Our imple-
mentation performs the cubature and energy density computation
using a mesh, motivated by the readily available methods for vol-
umetric deformables [An et al. 2008b], although the mathematics
are not tied to mesh-based cubature.

Regardless, the cubature mesh is not and need not be tied to
the representation of the training data. Furthermore, the cubature
mesh need not be the same across time steps, since the state is
carried across time steps by the latent configuration q. The cubature
should be chosen to adequately control the approximation (8) and
to enforce the essential boundary conditions.

This freedom makes scenarios that have connectivity changes
(e.g., fracture, cutting), and topology changes (e.g., punching out
a hole, growth of voids) refreshingly trivial: we simply choose an
appropriate cubature scheme for the next time step. For instance, if
a hole is instantaneously punched out, we simply refrain from inte-
grating over the excised domain, by switching to a cubature mesh
that reflects the revised topology and revised boundary conditions.

An alternative to switching the mesh would be to skip cubature
points that lie in the void. The key point is that there is a lot of free-
dom in the approach—even across time steps—to integrating of the
domain integral (8), because the representation of the configuration,
q, is separated from the representation of cubature.

5 MINIMIZATION VIA CUBATURE
Minimization. We minimize 𝐸 (q) using gradient descent [Mack-

lin 2022]. We initialize the increment at every cubature point with
the explicit time stepping prediction Δ𝒖𝑖 = ℎvj + h2M−1fext. At
every descent iteration, we compute the increments at all cubature
points, and then find the best-fit increment to the latent configura-
tion. The descent increment at the 𝑖th cubature point is

Δ𝒖𝑖 = 𝛼

(
𝑀

ℎ2
(W(𝑿𝑖 )q − qpred) +

𝜕Ψ(𝑿𝑖 +W(𝑿𝑖 )q)
𝜕W(𝑿𝑖 )q

)
. (9)

After evaluating the full space increment at every cubature point,
which we project to find the best fit subspace increment by mini-
mizing the quadratic

Δq = argmin
Δq

∑︁
𝑖

𝑤𝑖

W(𝑿𝑖 )Δq − Δ𝒖𝑖
2 , (10)

which amounts to solving a symmetric positive definite linear sys-
tem. The matrix depends only on the position and weight of the
cubature points, and whilst these are invariant, a single Cholesky
factorization allows for repeated projections via backsubstitution.

When the cubature set changes, we reassemble the systemmatrix.
Since W(𝑿𝑖 ) is a function of 𝑿𝑖 , we cache it at each cubature
point, eliminating the network inferenceW(𝑿𝑖 ) except at newly
introduced cubature points.

Cubature Sampling. Previous cubature sampling [An et al. 2008b;
von Tycowicz et al. 2013] provides promising results. One generates
a set of training poses for the cubature optimization preprocess.
This preprocess identifies desirable cubature points and associated
nonnegative weights to achieve accurate energy approximation
over the training poses.

But what about integrating subspace dynamics on novel meshes
unseen during training? In this case, the aforementioned approach
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Figure 5: One neural basis spans the deformations of mul-
tiple shapes. During precomputation, we train one neural
basis, (W, q), with a single training set encompassing the
full-space simulated deformations of five shapes spanning
cube to sphere (blue). Using a continuous displacement field
basis makes training on multiple shapes straightforward.
During the online subspace dynamics, we simulate the same
shapes with the same loading conditions (yellow), observing
good agreement, including for the top surface details.

is not directly applicable. We implemented a naïve cubature scheme,
which we found satisfactory for the examples that we tested. We

(1) select𝑚 vertices randomly from the tetrahedral mesh, and
(2) additionally, select all the vertices incident to the𝑚 vertices.

These steps yield the equiweighted cubature points {𝑿𝑖 }.
In all presented results that do not involve remeshing, we pre-

compute the cubature scheme. For the remeshing examples, the
cubature points in principle would change (locally) when the mesh
is changed (locally). In our simplified demonstration of remeshing,
where we know the sequence of meshes in advance, we precompute
the cubature points andW(Xi) for all meshes.

6 RESULTS
We conduct experiments to evaluate the unique features of LiCROM.
We ask whether one neural basis, (W, q), can

(1) be trained over diverse inputs generated by different meshes?
(2) reproduce deformations on geometries seen during training?
(3) and on novel geometries unseen during training?
(4) facilitate mesh connectivity and topology changes?

6.1 Unique capabilities of a continuous ROM
Training with different shapes. We train one neural subspace

(W, q) using a training set comprised of different shapes deformed
under similar load, and ask whether the subspace dynamics recon-
struct the different behaviors of the shapes included in the training
set. We generate five shapes spanning cube to sphere, with equal
bounding cubes, [±0.5,±0.5,±0.5]. We prescribe equal compressive
displacement: for every vertex with underformed position near the
top (𝑦 < 0.45) or bottom (𝑦 > −0.45) we prescribe an equal down-
ward (−2𝑚/𝑠) or stationary (0𝑚/𝑠) velocity. A single training set
includes the full-space dynamic deformations for these five meshes.
We simulate the same five shapes in the reduced model (see Fig. 5),
noting agreement with the training data.
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Table 1: Performance statistics. We list the average simulation time cost (in seconds) for full-space simulations and reduced-
space simulations. We also listed the number of sampled vertex and tetrahedrons. A latent space dimension 𝑟 = 20 was used
for all examples. The Young’s modulus is 5 × 105 for the dragon and bunny example, and is 2.5 × 106 for other examples. We
adopted a Poisson ratio of 0.25 for all examples. Hardware: Intel Core i7-10750H.

Example vertex tetrahedron sampled vertex sampled tet full space reduced space speedup
count count count count (�̃�) step cost (ms) step cost (ms)

Training with different shapes 20K 103K 1.3K 3K 142 8 17
Kinematic tearing 20K 91k-94K 3.7K 5.6K 323 11 29
Hole punching 20K 95K-100K 3.8K 6.3K 288 13 22
Falling Animals 40K 200k-210K 1.3K 2.1K 350 8 43
Interactive application 100K 516K 1.4K 2.2K 335 6 56
Dragon 80K 429K 3.3K 5K 307 9 34
Bunny 20K 101K 1.6K 2.4K 267 9 29

Table 2: Statistics on precomputation. We include the data volume and time required for data generation and training for
each example. During the data collection phase, we capture snapshots from various loading conditions, recording vertex
displacements at specific time step. We also listed the total cost of all sampling operations, including selecting cubature points
and cachingW(𝑿 ).

Example vertex training snapshots number of data generation training cubature evaluating
count count loadings cost (min) cost (h) selection (ms) W(𝑿 ) (ms)

Training with different shapes 20K 1650 5 3.4 4.9 15.9 32.7
Kinematic tearing 20K 1300 2 24.0 4.1 90.6 210.2
Hole punching 20K 5600 8 3.7 16.0 70.0 12.3
Falling Animals 40K 3600 3 32.0 10.6 23.1 6.4
Interactive application 100K 1200 20 96.1 7.7 188.0 11.1
Dragon 80K 1275 1 13.3 5.1 40.6 14.1
Bunny 20K 4800 8 12.9 13.4 26.2 10.4

We repeat this experiment, this time with subspace dynamics
on novel shapes unseen during training (see Fig. 7). We observe
good agreement for the overall deformation, albeit sometimes with
missing surface details, when these were not seen during training.

Kinematic tearing. Because the cubature mesh does not carry
state, it need not be tied to the meshing used in previous time steps
nor the training phase. Combinedwith the ability to train onmeshes
with different connectivity, these traits make subspace modeling of
tearing and fracture easier (see Fig. 6). During precomputation, we
train one neural basis using a single training set comprised of two
full-space simulations: (1) a clamped plate sagging under gravity;
(2) the same plate, with a Y-shaped cut, sagging under gravity.

In the online phase, we model the tearing of the plate using sub-
space dynamics. Over time, we progressively redefine the cubature
mesh to grow a Y-shaped cut (see Fig. 6). The cuts introduced in
the cubature mesh have the desired effect on the force computa-
tion, but they do not require a transfer of state variables from the
previous mesh. Recall that the training set includes only the intact
and fully cut geometry; the deformations for the partial cut arise
(as in all linear subspace approaches) from a weighted sum of the
precomputed displacement fields.

A natural question then is “how well does the continuous neu-
ral displacement field capture a discontinuous deformation?” This
is particularly poignant as our implementation employs smooth
ELU activation functions. We visualize the basis displacement field
W(𝑿 ) (see Fig. 8), observing the discontinuity.

Since the neural basis has no “knowledge” of the geometry, the cu-
bature bears full responsibility for providing geometric knowledge,
and therefore producing distinct dynamics for distinct geometries.
Undersampling produces artifacts (see Fig. 9). Using 3713 random
samples (compared to 20𝑘 vertices in the original data) is sufficient
to obtain a 29× speedup over the full space simulation.

Hole punching. In addition to simulating fractures, our method
is capable of simulating the process of punching the cube and
generating voids in real-time. In the example shown in Figure 10, we
run simulation on 5 meshes with a fixed bottom under gravity. After
training, we can simulate the process the cube being “damaged” (i.e.
holes being cut out) by runtime remeshing. Note that after each
remesh, the deformed position of the rest of the cube is consistent
with the frame before the remeshing, except for the newly generated
empty part.

Rolling animals. Our method is able to simulate the collision and
friction between the animals and the static inclined plane. For the
example shown in Figure 11, when generating training data, we
simulated an elastic animal under static gravity 𝑔 = −9.8𝑚/𝑠 . In
each frame, we check if any vertex intersects with an infinite plane
with normal [0,

√
2/2,

√
2/2]. If an intersection happens, we apply

a penalty force along the normal of the plane to handle collision
and set the velocity orthogonal to the plane normal to zero (infinite
friction force). Results show that our latent space dynamics can
reconstruct the colliding and rolling interaction between different
animals and the plane.
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Figure 6: Kinematically-prescribed Y-shaped tear. During pre-
computation, we train one neural basis on the full-space
simulations of both an intact plate and a Y- cut plate sag-
ging under gravity. During the online subspace dynamics,
the plate is cut progressively (on a prescribed schedule) by
redefining the connectivity of the cubature mesh. This novel
partial-cut connectivity of the cubature mesh is unseen dur-
ing training. The deformations for the partial cut arise natu-
rally from the available neural basis displacement fields.

Animal interpolation. After training on the three animals in
Fig. 12, we interpolate among these three meshes via Wasser-
stein distances [Solomon et al. 2015]. Thanks to the discretization-
agnostic nature of our method, we can readily deploy the previously
trained model with all these meshes. Fig. 12 demonstrates the cor-
responding latent space dynamics for each mesh.

6.2 Interactive application
We trained a neural basis on deformations induced by tugging at
the armadillo (see Fig. 3). The full-space and reduced simulations
require 335ms and 6ms per time step, respectively, on an Intel Core
i7-10750. The 56× speedup enables interactive manipulation at 30
frames per second.

The user can also load in previously unseen geometric models
that can be swapped for the armadillo, mid-simulation, without
resetting the kinematic configuration or momentum. Note that the
physical response is evaluated on the current geometry. Although
the kinematic training was conducted solely on the armadillo, the
physical response reflects the geometry, as evident, e.g., in the
higher frequency oscillations of the thinner arms. This demon-
strates the one-shot generalization potential of LiCROM. To the best
of our knowledge, this is the first interactive-rate demonstration
of model reduction that includes online substitutions of geometric
model, including previously unseen geometric models. Indeed, by
training on a single geometry, our approach generalizes to other
geometries, effectively achieving one-shot generalization.

6.3 Comparison with nonlinear CROM
Our method shares a similar motivation with Continuous Reduced-
Order Modeling (CROM) [Chen et al. 2023a,b]. Both seek discretiza-
tion independence. In CROM, a nonlinear decoder (q,𝑿 ) ↦→ 𝒖 maps
the reduced configuration and reference position to the correspond-
ing deformed position. Compared to a linear basis, a nonlinear
approach may be more complex to implement, analyze and com-
pute, or more carefully chosen training data to avoid overfitting. We
observed artifacts when applying CROM to deformable simulation,
which spurred our investigation into a linear subspace (see Fig. 14).

LiCROM offers an important advantage over CROM in the pro-
jection (10), which, due to the linearity of the basis, becomes a
simple minimization of a quadratic, i.e., the solution of a linear sys-
tem which, by prefactorization, can be reused along with cubature
points. By contrast, the nonlinearity of the CROM basis [Chen et al.
2023b] does not allow for such a trivial projection.

We leverage this fast projection (which amounts to just back-
substitution on the prefactored matrix) to implement implicit time
stepping, which requires repeated projections each time step. In
the nonlinear CROM, each such projection would require multiple
expensive network Jacobian evaluations.

7 DISCUSSION
We have presented the first discretization-independent linear model
reduction method, in the sense that the subspace basis does not
explicitly store, refer, or rely on particulars of the discretizations
employed to generate the training set, integrate the forces, or output
the resulting animation.

This discretization-independence is achieved by defining the
subspace basis vectors as continuous displacement fields over the
reference domain, which we implement using neural implicit fields.

Consequently, we are able to demonstrate that a single subspace
model can be trained from differing discretizations or even differing
geometries. The learned basis can accelerate simulation by about
20–50× whilst supporting phenomena not typically seen in sub-
spacemethods, such as phenomena that typically require remeshing
(e.g., cutting), changes to topology (e.g., hole punching), or novel
geometry unseen during training.

Limitations. These novel features are accompanied by novel lim-
itations. First, the trained subspace is of course limited by the ob-
served data. For a neural implicit field, this usual limitation is accom-
panied by a novel aspect: the field will not hesitate to “hallucinate”
an extrapolated result in portions of the reference domain Ω that
had few or no data observations. As a corollary, if we train a dis-
placement basis on a thin geometry, this basis may not be suitable
for a thick geometry, where some cubature points will sample a
potentially unsuitable extrapolation of the displacement field. It
would be interesting to incorporate regularizers for such extrapo-
lation [Liu et al. 2022]. Fig.15 (a) and (b) demonstrate two modes
of generalization failures of our approach: vastly different loading
conditions and geometric sizes.

Indeed, since the training of the subspace has no explicit knowl-
edge about the geometry, the trained subspace may fail to recon-
struct certain surface details when tested on novel geometry that is
not included in the training data, as shown in Fig. 7(b). It would be
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interesting to ameliorate this limitation by introducing an explicit
“geometry code” when training and later using the network.

Second, the combined training of a neural implicit field and Point-
Net is expensive compared to POD, requiring several hours. This is
the cost we trade for the benefit of PointNet’s permutation invari-
ance. Interestingly, if this permutation invariance were discarded
in lieu of a simpler, permutation-dependent decoder, some aspects
of discretization-independence would remain. In particular, while
the resulting embedding would no longer be independent of in-
put discretization, the resulting displacement field basis would still
be continuous and therefore not impose any discretization on the
cubature scheme nor the subspace dynamics output. Future work
may involve accelerating training while retaining permutation-
invariance.

Our model also shares the shortcomings and benefits of linear-
subspace model reduction methods: the dimension of the sub-
space typically exceeds that of nonlinear approaches, regardless
of whether the displacement-field is encoded as a discrete [Fulton
et al. 2019] or continuous [Chen et al. 2023a,b] field. However—with
the exception of methods developed in the computational math
community [Lee and Carlberg 2018]—the state of the art in nonlin-
ear approaches (especially in graphics) still seems to rely on linear
subspaces for regularization [Fulton et al. 2019; Shen et al. 2021];
perhaps these same kinds of regularizations can be applied in the
continuous domain, e.g., by regularizing CROM with LiCROM.

Unlike other linear-subspace ROMs, ours is not trained using
POD, nor does the training objective explicitly ask for orthogonal-
ity. Orthogonality optimizes the conditioning of the basis, and is
desirable for reducing error during projection; we did not observe
any challenges with projection. We intend to evaluate the angle
between basis vectors and report this in the near future.

Future work. Our preliminary implementation leaves open many
immediate steps. We employed a random cubature sampling ap-
proach with equal weights, solely for its simplicity and immediacy.
Recall that the Y-shaped tear required 3.7𝑘 random samples. It
seems reasonable to expect that a data-aware sampling approach in
the spirit of An et al. [2008b] could reduce the number of cubature
points. Since our examples include geometries unseen during train-
ing, the sampling strategy would have to be adapted to the data at
runtime.

Following warp, we used gradient descent to minimize the en-
ergy, however, alternatives abound. For instance, our implementa-
tion is immediately amenable to incorporating an (L-)BFGS solver,
which approximates Newton’s method without using a Hessian.
Indeed, due to the linearity of the subspace, computing the re-
duced energy Hessian, as required for an exact Newton’s method,
is straightforward via Hessq Ψ(𝑿 + 𝒖 (q)) = W(𝑿 )𝑇 Hess𝒖Ψ(𝑿 +
W(𝑿 )q)W(𝑿 ),which can be assembled via cubature at {𝑿𝑖 }. Note
that the exact Hessian evaluation does not require differentiating
through the neural network, which would be the case for a nonlin-
ear subspace [Chen et al. 2023b; Fulton et al. 2019].

Although we began with warp on the GPU, we ultimately imple-
mented our online subspace dynamics solely on the CPUwith taichi.
In our intended application domains (virtual reality, games) there
is significant contention over GPU acceleration, which is primarily
reserved for rendering. Achieving interactive rates on a CPU, albeit

more limiting, was an important criterion. However, for other use
cases, a fast GPU implementation remains desirable, and we intend
to re-implement this method on the GPU.

Open source. Our implementation of LiCROM will be released.
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Shapes in Training Data

Test Shapes, not in Training Data

(a) Illustration of test data

Full Space Dynamics, not in Training Data

Reduced Space Dynamics

(b) Latent space dynamics

Figure 7: One neural basis can span plausible deformations
for new shapes. During precomputation, we train one neural
basis, (W, q), with a single training set encompassing the full-
space simulated deformations of five shapes spanning cube
to sphere (blue). The training omits the test shapes (coral).
During the online subspace dynamics, we simulate the test
shapes with the same loading conditions, observing good
general agreement, albeit with some missing surface details
unseen during training.

W1...3 (X).x W1...3 (X) .y W1...3 (X) .z

Figure 8: Displacement basis visualization. We visualize the
first three dimensions of the continuous reduced basisW(𝑿 )
over the reference domain Ω for the tearing scenario (see
Fig. 6). Red, green, and blue correspond to the displacements
of W1 (𝑿 ), W2 (𝑿 ) and W3 (𝑿 ), respectively. Each W𝑖 (𝑿 ) is
vector-valued: we visualize the 𝑥 , 𝑦, and 𝑧 components of
displacement in the left, middle, and right, respectively. It is
evident that the basis includes displacement discontinuities,
particularly along the 𝑥𝑧 plane of the plate.

376 sampled vertices 3713 sampled vertices

Figure 9:Comparison of cubature point density for the tearing
scenario (see Fig. 6), comparing 376 (left) versus 3713 (right)
sampled vertices.

 
Training Data

  

→ → → →
Punch! Punch! Punch! Punch!

Reduced Space Dynamics

Figure 10: Punching Cube. We train this example using 5
mesheswith different void. Afterwe tain a networkwith the 5
sequence, we are able to simulate the process of punching the
cube and generate voids at runtime. In latent space dynamics,
we apply remeshing whenever we "punch" a new void.

Training Data

Reduced Space Dynamics

Figure 11: Rollin’ along. We learn a subspace for the deforma-
tion induced by rolling of the bunny, the duck “bob”, and the
cow “spot” down an inclined plane. We then apply this sub-
space to simulate the deformations of myriad interpolated
animal shapes.
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Time
steps

Spot Bob Bunny
Interpolation Interpolation

Figure 12: Animation interpolation. After training on the
dynamics of a few meshes, our method can simulate the
dynamics of the interpolated meshes.

Update velocities 20.0%

Decode cubature
36.9%

Project

24.0%

Evaluate gradient

19.1%

Figure 13: Breakdown of computational cost for interactive
manipulation (see Fig. 3). In operation order: Over all cuba-
ture points, (a) update velocities by evaluatingW(𝑿 ) ¤q; (b) de-
code cubature by evaluatingW(𝑿 )q; (c) evaluate the gradient
(9). Finally, (d) project to the reduced space by least squares
(10), solving the prefactored linear system using backsubsti-
tution.

   

  

LiCROM (Ours) Full space dynamics Nonlinear CROM

Recovers too fast

   
LiCROM (Ours) Full space dynamics Nonlinear CROM

Artifact

Figure 14: Comparison with CROM. From left to right: our
method, ground truth full-space simulation, CROM. In the
dragon’s example, we applied a force on the dragon’s head
that is not included in training data. We found that CROM
suffers fromoverfitting and looks less similar to ground truth
compared with our method. In the bunny’s example, there
are visible artifacts on the bunny’s ear using CROM, while
our method generates a reasonable result.

Training Data Full Space Dynamics
(Not in Training Data)

Reduced Space Dynamics
(Not in Training Data)

(a) Generalization over loading conditions (failure case).

   
 

  
 

  
 Training data Scale 2x Scale 1x Scale 0.5x

(b) Generalization over rescaling of shape (failure case).

Figure 15: Failures of generalization: We tested the displace-
ment field from Fig. 5 (training with different shapes). (a) We
consider generalization over loading conditions. Training on
a cube compressed by a vertical load and testing on a cube
subject to rotational loads reveals poor agreement between
full and reduced space dynamics. (b) We also consider gen-
eralization over spatial scale. Training on a unit cube with
vertical load, and testing on cubes where both spatial extent
and loading are scaled accordingly, we observe unexpected
surface features, particularly when scaling up.
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